首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the effect of heat treatment on the corrosion behavior of Ti-13Nb-13Zr alloy in Ringer’s solution. The microstructural evolution of various phases after beta solution treatment (βST) and alpha + beta solution treatment (α+β ST), is studied using optical microscope, electron probe microanalysis and XRD techniques. Corrosion behavior of the solution treated samples is studied in Ringer’s solution using open circuit potential-time measurements and cyclic polarization. Corrosion studies reveal that, the heat-treated samples with depletion of Nb to very high levels in alpha phase exhibit inferior corrosion behavior. Amongst all the heat-treated samples investigated, the water quenched α+β ST specimen exhibit superior corrosion resistance due to the even distribution of the alloying elements in the three phases, namely α,α″ and β.  相似文献   

2.
Nanotubular oxide layer formation was achieved on biomedical grade Ti-13Nb-13Zr alloy using anodization technique in 1 M H3PO4 + 0.5 wt.% NaF. The as-formed and heat treated nanotubes were characterized using SEM, XRD and TEM. Corrosion behaviour of the nanotubular alloy was investigated employing potentiodynamic and potentiostatic polarization. The alloy after nanotubular oxide layer formation exhibited significantly higher corrosion current density than the bare alloy. The lower corrosion resistance of the nanotubular alloy was suggested to be associated with the distinctly separated barrier oxide/concave shaped tube bottom interface. A heat treatment at 150 °C appreciably enhanced the corrosion resistance property.  相似文献   

3.
利用真空熔炼制备了Ti-29Nb-13Ta-4.6Zr合金铸锭,对合金在800 ℃固溶处2 h后在300~500 ℃下进行等时时效,研究时效温度对合金的组织结构和摩擦磨损性能的影响。结果表明:800 ℃固溶2 h后水冷的合金是单一过冷亚稳近β组织,低温时效后,样品中出现了弥散的α相,而当时效温度超过450 ℃以上时α相不再呈弥散分布,而是在晶界处富集。随着时效温度的升高,合金的硬度逐渐增高,到500 ℃时达到最高253 HV0.3,然后快速降低;摩擦因数同样随着时效温度的增高呈现先升高后降低的规律。450 ℃时效的样品的综合性能最好,摩擦因数较小,且磨损试样出现了粘着磨损的特征。  相似文献   

4.
当前在医学界广泛采用生体相容性、比强度和耐蚀性都十分优越的钛合金 ,作为人造股关节和人造牙根等人体硬组织代替材料。最近 ,一些 β型钛合金Ti 35Nb 7Zr 5Ta、Ti 15Mo以及α + β型钛合金Ti 3Al 2 5V等都相继纳入美国标准ASTM。在美国和日本对于钛合金的研究开发都十分活跃。作为生物医用材料 ,在日本新开发了Ti 2 9Nb 13Ta 4 6Zr合金 ,它完全是由于对人体无毒性反应的元素所构成 ,其强度、韧性和弹性模量也能满足用作生体材料的要求。但是作为人体硬组织代用材料 ,须长期埋入人体内并且往往要承受反复…  相似文献   

5.
利用放电等离子烧结技术(SPS)制备Ti-29Nb-13Ta-4.6Zr(TNTZ)合金,研究烧结温度对合金致密度、显微组织及力学性能的影响。结果表明:在950~1150℃烧结温度范围内合金具有较高的致密度和抗压强度,合金由β-Ti相与Ti-Nb-Ta-Zr固溶体形成的混合基体组织及少量未熔化的Nb、Ta、Zr金属颗粒组成。随着烧结温度的升高,合金致密度和抗压强度呈增大趋势,合金中混合基体组织尺寸越来越大且不断融合联结,难熔金属颗粒数量越来越少且尺寸越来越小。合金压缩弹性模量在58~60GPa之间,说明具有良好的力学相容性,烧结温度变化对其影响较小。  相似文献   

6.
Composite materials that consisted of a biomedical β-type titanium alloy, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) with low Young's modulus and segment polyurethane (SPU) have been fabricated for application in biomedical devices. The effects of different kinds of terminal functional groups and the thickness of the silane layers (SIL) on the adhesive strength between TNTZ and SPU were investigated by means of shear bonding tests. The following silane coupling agents were employed in this study: 3-methacryloxypropyltrimethoxysilane (γ-MPTS), aminopropyltriethoxysilane (APS), and 3-mercaptopropyltrimethoxysilane (γ-MPS). Furthermore, the shear bonding strength of the TNTZ/SIL/SPU interface was also characterized after immersion in water for 30 d.  相似文献   

7.
采用拉伸速率突变法,研究Ti-29Nb-13Ta-5Zr(Ti-29-13)合金冷轧后在700~800 ℃和5′10-4~1′10-2 s-1应变速率范围内的高温变形行为和变形机制,并与典型β钛合金Ti-15V-3Cr-3Sn-3Al(Ti-15-3)进行比较。结果显示两种合金中均出现了非连续屈服现象,Ti-29-13合金的亚晶行为不同于Ti-15-3合金。Ti-29-13合金的延伸率低于Ti-15-3合金,应力指数n几乎恒定为3.3,变形激活能为152~161 kJ/mol;Ti-15-3合金在730 ℃以上的n值为2.3~2.5,变形激活能为173~176 kJ/mol。  相似文献   

8.
采用拉伸速率突变法,研究Ti-29Nb-13Ta-5Zr(Ti-29-13)合金冷轧后在700~800 ℃和5′10-4~1′10-2 s-1应变速率范围内的高温变形行为和变形机制,并与典型β钛合金Ti-15V-3Cr-3Sn-3Al(Ti-15-3)进行比较。结果显示两种合金中均出现了非连续屈服现象,Ti-29-13合金的亚晶行为不同于Ti-15-3合金。Ti-29-13合金的延伸率低于Ti-15-3合金,应力指数n几乎恒定为3.3,变形激活能为152~161 kJ/mol;Ti-15-3合金在730 ℃以上的n值为2.3~2.5,变形激活能为173~176 kJ/mol。  相似文献   

9.
A.A. Hermas 《Corrosion Science》2008,50(9):2498-2505
Improvement of the passivation behavior of Type 304 austenitic stainless steel (SS) by coating with conductive polymers (CPs), like polyaniline (PANI) and poly(o-phenylenediamine) (PoPD), followed by exposure in an acid solution has been demonstrated. The passive films formed on SSs (after peeling off the polymer layer) are compared with those formed during anodic polarization under the same exposure condition. The passive films beneath the CPs are thicker and less hydrated than those formed on uncoated stainless steel. The polymer layer enhances the enrichment of chromium and nickel in the entire passive oxide, forming a more protective film than that formed during anodic polarization. The elemental distribution within the passive film is different in the two modes of passivation. The type of the polymer influences on the composition of the passive film. The best passivation is obtained by PoPD, with the passive film resulting in significant resistance of the SS to pitting corrosion in the 3% NaCl solution. The oxide film of this steel is characterized, in its inner and outer layers, by the highest ratio of Cr(OH)3/Cr2O3 and the lowest content of iron species.  相似文献   

10.
Oxide films were formed on the biocompatible alloy Ti–13Nb–13Zr in a phosphate buffer at open-circuit potential (Eoc), potentiodynamically up to 8 V, or by micro-arc oxidation (MAO) at 300 V. Their electrochemical properties were assessed in a phosphate buffer saline solution (PBS). EIS and SEM results showed that the Eoc and potentiodynamically formed oxide films were compact and behave as a monolayer, while the MAO oxide was a bilayered film (compact inner and porous outer layers). Open-circuit potential and EIS resistance values indicated that the MAO oxide provides the best corrosion protection for the alloy in PBS.  相似文献   

11.
The surface physico-chemistry properties of stainless steel and the effects of a cold rolling treatment were investigated. X-ray photoelectron spectroscopy (XPS) analyses were carried out on rolled surfaces at different rates. Thus, by characterizing passive film chemistry and contamination layer, the modifications due to this treatment were quantified, in particular an increase of the ratio (Fe/Cr)oxide is evidenced with the level of the cold rolling treatment. Moreover, based on an angle resolved analysis, a new model where the contamination layer is represented as isolated parts was developed in order to describe the geometry of this carbon contamination. XPS experiments show an iron enrichment of the passive film during the cold rolling treatment, which seems to be explained by a surface heating during the mechanical treatment. Therefore, the new island model puts in evidence the effects of ageing time and surface condition on the geometry of carbon contamination. Hence, cold rolling increases the thickness and the recovery of carbon contamination on the stainless steel surface.  相似文献   

12.
In situ growth of Mg–Al hydrotalcite conversion film on AZ31 alloy has been developed by a two-step method. The characteristics of the films were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electronic microscope (SEM) observation, electrochemical and immersion tests. The film formation process was proposed based on the open circuit potential (OCP) measurements and surface analysis. A precursor film with network cracks is first formed and then this film is transformed into a compact and uniform hydrotalcite (Mg6Al2(OH)16CO3·4H2O) film after the post treatment. This dense Mg–Al hydrotalcite film can provide effective protection to the AZ31 alloy.  相似文献   

13.
Passive films were compared on two stainless steels: the recent lean duplex EN 1.4162 and EN 1.4432 (316L). For alloys with significant amount of manganese and nickel, the Mn 2p3/2 peak will overlap with the Ni-LMM. To resolve this overlap, Ni 2p3/2 to Ni-LMM intensity ratios were recorded on 1.4432, compensated for overlayer thickness, and then used to fix the Ni-LMM intensities in the Mn 2p spectra on the duplex material. Manganese was found in oxidation states II and V/VI; its film content was not dependent on the bulk composition.  相似文献   

14.
利用TiH_2、ZrH_2的脱氢特性,结合粉末冶金方法,将TiH_2、Nb和ZrH_2粉末经混合球磨、压制成形,真空烧制得到Ti-13Nb-13Zr合金,对样品进行金相显微镜、SEM、XRD分析,结果表明:烧结坯体相对密度达到92.2%,合金主要组织为α+β型片状魏氏组织,且在合金形成过程中β稳定元素的Nb发挥作用,使得钛的β相在降温完成后仍稳定存在;α-Ti及α-Zr为六方密排(hcp)结构,β-Ti、Nb及β-Zr同为体心立方(bcc)结构。  相似文献   

15.
The CeO2 thin film was prepared via sol-gel method on fluorinated AZ91D magnesium alloy surfaces. The surface morphology, composition and the corrosion resistance of the film were investigated in details using scanning electron microscope, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy as well as potentiodynamic polarization tests. It was found that small amount of MgO and MgF2 were encapsulated in CeO2 thin film. The electrochemical measurement results demonstrated that the CeO2 thin film on fluorinated AZ91D magnesium alloy could improve the corrosion resistance approximately by two orders of magnitude compared with that of the bare substrate.  相似文献   

16.
Corrosion behaviour of sputter-deposited Mg–Zr alloys was examined in a borate buffer solution of pH 8.7. XRD measurements showed that the alloys were supersaturated with Zr. The addition of 29 at.% Zr or more was very effective in increasing the corrosion resistance of Mg by more than four orders of magnitude. XPS analysis of spontaneously formed passive films revealed that the passive film consisted of double oxyhydroxide composed of enriched tetravalent Zr and divalent Mg cations. The enrichment of Zr cations in the passive film is responsible for the enhanced corrosion resistance of Mg–Zr alloys.  相似文献   

17.
The composition and structure of passive film formed on 316L SS immersed in an anhydrous methanol solution (water content < 0.05 wt%) containing 0.42 wt% LiCl at 323-473 K were investigated by X-ray photoelectron spectroscopy (XPS), and compared with those of film formed in an aqueous solution. The passive film formed in the methanol solution was mainly composed of Fe and Cr oxides, and it possessed a double-layered structure consisting of an Fe oxide-rich outer layer and a Cr oxide-rich inner layer. Dissolution of the Fe-rich layer and densification of the Cr-rich inner layer were observed, especially at high temperatures. However, these were suppressed in an aerated methanol solution at 423 K or below, probably due to the barrier effect of adsorbed oxygen. No Ni compound contributed to composing the passive film, even at higher temperatures. The ratio of OH to O2− was small and decreased with an increase in temperature (the presence of oxygen suppressed the decrease, especially at 423 K or below). The chloride ions were concentrated in the Fe-rich outer layer, and they penetrated more deeply than that in the aqueous solution into the passive film formed in the methanol solution.  相似文献   

18.
Influences of nitrogen on the passivity of Fe-20Cr-(0, 1.1)N alloys were examined by in situ electrochemical techniques. Nitrogen was incorporated in the form of (Fe, Cr)-nitrides in the passive film, and Cr was enriched in the film of the alloy with nitrogen. Photocurrent analysis demonstrated that the structure of passive film formed on Fe-20Cr-1.1N alloy is Cr-substituted γ-Fe2O3 with (Fe, Cr)-nitrides. Mott-Schottky analysis revealed that the film formed on Fe-20Cr-1.1N contained higher Cr6+ and lower Cr3+ vacancy concentrations compared with that on Fe-20Cr alloy. All of these results were associated with the enhanced protectiveness of the film on Fe-20Cr-1.1N.  相似文献   

19.
K Asami  K Hashimoto 《Corrosion Science》2003,45(10):2263-2283
The surface compositions of stainless steels types 304, 316, 430, and 444 combined with four types of surface finishes, 2B finish, hairline polishing, mirror polishing, and bright annealing, were measured by ICP-AES, EPMA, and XPS before exposure. The surface finish that most enriched the chromic species in the surface film was mirror polishing, followed by bright annealing, 2B finish, and hairline polishing. The order of corrosion-resistance was type 444, type 316, type 304, and type 430. The surface compositions were correlated with the rating number and pitting depth after exposure to atmospheric environments. The rating number had a high positive correlation with the concentration of Cr in the surface film, and had a slight correlation with the near-surface composition measured by EPMA at 12 kV, but did not show any correlation with bulk composition within the composition range covered in the present work. This same trend was observed for pitting depth. It was concluded that the cationic concentration of Cr in the surface film before atmospheric exposure is the prime factor in controlling the resistance of stainless steels to atmospheric corrosion.  相似文献   

20.
Formation mechanism of phosphate conversion film on Mg-8.8Li alloy   总被引:1,自引:0,他引:1  
A novel phosphate conversion film was obtained on Mg-8.8Li alloy. The film formation mechanism was studied by electrochemical measurements, scanning electron microscopy (SEM) observation and X-ray photoelectron spectroscopy (XPS) analysis. The deposition of conversion film contained three stages. Stage I: loose surface film consisting of oxides and hydroxides was dissolved to expose the bare substrate. Stage II: β phase was preferentially dissolved, accompanying with the deposition of conversion film, and then α phase was deposited with conversion film. Stage III: conversion film was gradually improved until the dynamic balance of film dissolution and formation was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号