共查询到20条相似文献,搜索用时 0 毫秒
1.
The pitting corrosion of SUSU304 steel can be suppressed by the application of a 19.5 kHz ultrasound (US) in 3.5% NaCl aqueous solution. At a constant vibrator-to-specimen distance of d = 76 mm equal to the wavelength, the suppression effect increased with the input power to vibrator and the largest effect was obtained at the power of I = 8. At constant input powers of I = 2 or 8, the suppression effect decreased with the increase in the vibrator-to-specimen distance, but the largest effect was obtained at d = 68 mm in each case of I = 2 and 8. 相似文献
2.
The variation with time of the open circuit potential of high molybdenum containing stainless steel (Type 254 SMO) was measured in 4% sodium chloride solution in the temperatures range 30-100 °C. The plot of steady state potentials as function of temperature showed an inflection at 50 °C, attributed to the decrease of oxygen solubility in test solution above 50 °C. Potentiodynamic cycling anodic polarization technique was used to determine the critical pitting potential (Epit) and the critical protection potential (Eprot) of the steel in 4-30% NaCl solutions at temperatures between 30 and 100 °C. By plotting the two values versus solution temperature, the corresponding critical pitting (CPT) and the critical protection (CPrT) temperatures were determined. Both parameters decreased with increasing chloride content. Above the CPT, Epit and Eprot decreased linearly with log[Cl−]. The addition of bromide ions to the solution shifted both Epit and Eprot towards positive values. In 4% NaCl, Epit increased linearly with pH in the range 1-10. The combined effect of chloride ion concentration and pH on the morphology of the pits was examined by scanning electron microscopy (SEM) following potentiodynamic cycling anodic polarization. 相似文献
3.
The transition from metastable to stable pitting was studied in 0.5 M NaCl water solution for two cast duplex stainless steels under different microstructural conditions achieved by annealing in the range from 900 °C to 1200 °C. The ensuing microstructural changes in heat treated steels were defined and correlated with established pitting potentials (Ep) and sites of corrosion damage initiation. The variations in Ep have been discussed in terms of secondary phases precipitation. The critical condition for pit stability was quantified and used to select an appropriate microstructural state, resulting in the higher potential at which stable pit growth is first observed. 相似文献
4.
An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater 总被引:1,自引:0,他引:1
The effects of applied torque on corrosion behaviour of 316L stainless steel with crevices were investigated using the cyclic potentiodynamic polarization method. Three kinds of crevices (316L-to-polytetrafluoroethylene, 316L-to-fluoroelastomeric and 316L-to-316L) were tested in artificial seawater at 50 °C. Corroded surface morphology was also investigated using scanning electron microscopy. Results indicate similar trends in crevice corrosion susceptibility with increasing applied torque. Among the three crevices, the 316L stainless steel specimen, coupled to the 316L stainless steel crevice former, is the most susceptible to crevice corrosion. 相似文献
5.
A critical crevice solution and IR drop crevice corrosion model 总被引:1,自引:0,他引:1
This paper presents a mechanistic model describing the dynamic concentration profiles and corrosion currents within a corroding crevice. The model couples anodic areas within the crevice with cathodic areas on the bold surface. It also incorporates the combined effects of the chemical attack of the crevice solution along with the electric potential changes in the crevice and over the bold surface. The mathematical model is used to predict the dynamic crevice pH profile and remarkable agreement with experimental data is evident. Three crevice corrosion phases were determined that correspond to the evolution of the electric potential drop within the crevice. 相似文献
6.
The effect of a magnetic field on chloride induced pitting of stainless steel was studied by potentiodynamic measurements in aqueous NaCl solution in a cylindrical cell with the field perpendicular to the surface under test. Compared to identical tests without field, a significant shift of the repassivation potential Er in the cathodic direction was observed, together with the formation of small pits at high density in the periphery of the electrode. These pits develop under the influence of a vortical flow induced by the magnetohydrodynamic effect. The shift of Er is explained as the consequence of the occluded morphology of these pits. 相似文献
7.
The crevice corrosion behaviour of stainless steels containing 25 mass% Cr, 3 mass% Mo and various amounts of Ni was investigated in natural seawater. The results showed that ferritic steels containing nickel were more resistant to corrosion than both ferritic steels without nickel and austenitic steels. The superiority of the Ni bearing ferritic steel over the other steels was in close agreement with the depassivation pH of those steels in acidic chloride solutions. The results showed that the addition of Ni to ferritic steel was effective in decreasing the depassivation pH and the dissolution rate in acidic chloride solutions at crevices. 相似文献
8.
The influence of microstructure evolution and alloying element redistribution of UNS S32304 duplex stainless steel induced by annealing treatment on the crevice corrosion behaviour was studied. As the annealing temperature was increased from 1030 to 1150 °C, the crevice corrosion resistance was decreased and the active peaks were not only increased in magnitude but also shifted towards the more noble direction. Austenite and ferrite have greatly different polarization behaviour within the crevice. This study provides guidance to the material design and usage in industry field in consideration of different polarization behaviour induced by the evolution of microstructure and alloying elements. 相似文献
9.
AISI 304 stainless steel specimens were exposed in-situ to fresh dam-water for nearly 2 years. Open circuit potential (OCP) of the specimens becomes remarkably ennobled after exposure for about 40 days. The ennobled OCP of coupons is greatly affected by both immersion depth and sunlight. It is found that ammonium, nitrate, nitrite and chloride ions are enriched in the biofilm. It is suggested that the reduction of nitrate may be partly responsible for the OCP ennoblement. Localized corrosions at welds and crevices of specimens are attributed to both the OCP ennoblement of specimens and the chloride ion enrichment in the biofilm. 相似文献
10.
S. Majid Ghahari Alison J. Davenport Trevor Rayment Thomas Suter Jean-Philippe Tinnes Cristiano Padovani Joshua A. Hammons Marco Stampanoni Federica Marone Rajmund Mokso 《Corrosion Science》2011,53(9):2684-2687
Pitting corrosion of stainless steel has been investigated with high-resolution in situ X-ray microtomography. The growth of pits at the tip of stainless steel pins has been observed with 3D microtomography under different conditions of applied current and cell potential. The results demonstrate how pits evolve in stainless steel, forming a characteristic “lacy” cover of perforated metal. In addition, it is shown how the shape of pits becomes modified by MnS inclusions. 相似文献
11.
Three duplex stainless steel weldments were produced by changing the chromium element to study the correlation between the pitting corrosion characteristics and the component ratio of the dual phase. The pit morphologies showed that metastable pits were generated at a lower pitting resistance equivalent number (PREN) phase. The secondary austenite phases seemed to serve as a path for the corrosive environment regardless of the ferrite number (FN). There is some discrepancy between the measured values (pitting potential (Ep) through polarization test) and expected values (sequence ranked by PREN of weaker phase) in 1 mol l−1 NaCl solution at 60 °C. 相似文献
12.
In this study, critical pitting temperature (CPT) of 2205 duplex stainless steel (DSS2205) was assessed using electrochemical impedance spectroscopy (EIS) in ferric chloride solution. In order to verify the results other methods such as ASTM G 48, potentiodynamic and potentiostatic polarisation and zero resistance ammeter (ZRA) were also employed. The results show a strong close relation between the results of this method by those of previous methods. CPT of the alloy is 40 °C based on standard method and 44 °C, 49 °C according to the ZRA and potentiostatic methods. Both potentiodynamic and EIS methods give an almost identical CPT value. 相似文献
13.
The present investigation was undertaken to analyze the effects of isothermal ageing treatments, carried out between 700 and 900 °C for a variety of times up to two weeks and followed by water quenching, on the microstructure and on the localized corrosion resistance of a superduplex stainless steel, SAF 2507.The quantitative metallography coupled with X-ray diffraction techniques was adopted to follow the microstructural evolution, together with SEM microscopy.Electrochemical potentiodynamic tests, as cyclic polarization curves recorded in sodium chloride solutions, together with weight loss measurements were employed to evaluate the susceptibility of the aged specimens to pitting corrosion.The influence of the transformation of ferrite into secondary austenite and sigma phase and of other microstructural variations, as chromium nitrides precipitation, on the stability of the passive film is shown. The susceptibility of the aged alloy to pitting corrosion phenomena, is related to sigma phase precipitation in association to the secondary austenite formation, which lead to a noticeable Cr depletion at grain boundaries. 相似文献
14.
P. Ernst 《Corrosion Science》2007,49(9):3705-3715
We correlate the effect of high chloride concentration on the critical pitting temperature (CPT) of type 316L stainless steel with its effect on the critical pit solution chemistry as determined by the artificial pit technique. It is shown that the change in CPT with bulk chloride concentration (0.5-9 mol kg−1) can be correlated with a change in the ratio of C∗/Cs, where C∗ is the critical dissolved alloy cation concentration to sustain pitting, and Cs is the solubility of FeCl2 at the pit surface. A complicating factor is that natural pits can only grow with C∗ = Cs at the lower chloride concentrations, but can grow without the salt film at very high chloride concentrations; this transition is believed to occur close to 5 or 6 m bulk chloride concentration. The dependence of Cs on bulk chloride concentration is given a new interpretation based on a common-ion effect operating within an altered local chemistry with complexation. 相似文献
15.
By using the electrochemical frequency modulation (EFM) technique, the non-linear behavior of a corroding system is measured. This non-linear behavior is likely to be different for a system undergoing uniform or pitting corrosion. The implementation of the EFM technique to detect pitting corrosion has been investigated by observing the fluctuations in the so-called causality factors. These causality factors, resulting from an EFM test and in the ideal case having values of 2 and 3, respectively, are normally used for quality and data validation purposes. While investigating pitting corrosion, they show different behavior leading to the CPT (critical pitting temperature) detection. 相似文献
16.
In the present paper the effects the of cold rolling on pitting corrosion of 17-4 precipitation hardening stainless steel in 3.5 wt% NaCl solution was investigated. In order to clarify the effect of cold rolling the metastable pitting has been examined in more details. The results presented show that cold rolling increases the dissolution rate of metastable pitting in a manner which facilitates the transition from metastable to stable pitting. On the other hand, the frequency of occurrence of metastable pits decreases with cold working. In overall, cold rolling has no significant effect on pitting potential. 相似文献
17.
To clarify the critical relative humidity (RH) to initiate pitting corrosion and the rusting mechanism in a marine atmospheric environment, pitting corrosion of Type 430 stainless steels under drops of MgCl2 solutions were investigated. A pitting corrosion test was performed at different relative humidities under droplets with various diameters and thicknesses. The probability of pitting decreased as the diameter and thickness decreased. Pitting progressed only when the chloride concentration exceeded 4 M, which is the equilibrium concentration at 80% RH. Accordingly, pitting of Type 430 could be initiated when the RH was less than 80%. Additionally, a pitting corrosion mechanism of Type 430 stainless steel under droplets containing chloride ions is proposed. 相似文献
18.
The surface films formed on type 316LN stainless steels (SS) with different nitrogen contents, during potentiodynamic polarization in acidified 1 M NaCl solution, were characterized by Laser Raman Spectroscopy (LRS). LRS confirmed the presence of oxides and oxychlorides of iron and chromium, hydrated chlorides and nitrates in the film. Raman mapping showed increasing nitrate content in the film with increasing nitrogen content. The film on the uncorroded material showed the presence of chromium and molybdenum oxides. The improvement in pitting corrosion resistance of type 316LN SS with increasing nitrogen content was attributed to increased amount of nitrates in the passive film. 相似文献
19.
This paper addresses the influence of cold rolling and tensile deformation on the pitting corrosion resistance of AISI 304 and AISI 430 stainless steels, investigated using some electrochemical techniques specifically designed for the different pitting stages to be analyzed separately. Cold work is shown to act differently depending on the pitting stage under consideration. (i) The pit initiation frequency shows a maximum after 20% cold-rolling reduction or 10% tensile deformation. This maximum is also observed on the ferritic grade, contradicting the hypothesis of a direct effect of strain-induced martensite, and is more likely related to the dislocations pile-ups. (ii) The pit propagation rate increases monotonously with cold rolling reduction, and pit repassivation ability decreases (leading to a larger number of stable pits), suggesting that the overall dislocation density is the controlling factor in these stages. Last, the significance of pitting potential measurements is discussed in the light of the effect of the cold-rolling reduction on the measured values. 相似文献
20.
Localized corrosion of 304 stainless steel under droplets of 1 M sodium chloride solution was investigated by the wire beam electrode (WBE) method. It was found that the current distributions were heterogeneous with isolated anodic current peaks mostly located near the edge of the droplet. During the corrosion process, the stainless steel WBE exhibited the stochastic characteristics with the disappearance of some anodic sites. In addition, stainless steel suffered more serious localized corrosion with the increase of the droplet size. The increase of the cathodic area and the three-phase boundary (TPB) length was believed to be the reason. 相似文献