首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of pre-treatment in the formation of a cerium conversion coating is investigated for the protection of AA2024-T3 and 7075-T6 alloys. The alloys were alkaline-etched and de-smutted in nitric acid, prior to cerium treatment in Ce(NO3)3 at 85 °C with H2O2 accelerator. Potentiodynamic polarization studies in 3.5% NaCl solution revealed a large shift of  300 mV of the corrosion potential below the pitting potential for the 7075-T6 alloy, which correlated with the development of a finely-textured, uniform coating. However, the formation of a uniform coating and protection was dependent upon the time of de-smutting, with non-uniform coatings resulting from extended times of de-smutting. In contrast, non-uniform coatings developed on the 2024-T3 alloy, with pitting potential at the corrosion potential, irrespective of the time of de-smutting. Findings for the 2024-T3 alloy indicate that extended de-smutting affects the enrichment of alloying elements.  相似文献   

2.
采用电化学测量技术,研究了等径转角挤压方法(ECAP)变形后的AA7075-T651铝合金在NaCl溶液中的电化学腐蚀行为。结果表明:同道次ECAP状态下,随着Cl-浓度增加,AA7075-T651的自腐蚀电位和点蚀电位负移,耐腐蚀性能降低;而在同浓度NaCl溶液中,随着ECAP挤压道次增加,AA7075-T651的自腐蚀电位和点蚀电位正移,耐腐蚀性能提高。本次试验也表明了Cl-浓度对于该铝合金耐腐蚀性能的影响程度要远超过ECAP技术。  相似文献   

3.
A range of structurally-related compounds were tested for their capacity to inhibit corrosion on aluminium alloys AA2024-T3 and AA7075-T6 in 0.1 M NaCl solution. It was found that the thiol group, positions para- and ortho- to a carboxylate, and substitution of N for C in certain positions strongly inhibited corrosion. The hydroxyl group was slightly inhibitive, while the carboxylate group provided little or no corrosion inhibition on its own. In several cases, different activities were found on the different alloys, with some compounds (particularly thiol-containing compounds) being more effective on AA2024 than on AA7075.  相似文献   

4.
The effect of prior corrosion on the mechanical properties of 7475-T761 aluminum alloy was investigated by immersion test, stress corrosion test, cathode charge method and electrochemical polarization test. Results show that prior corrosion in the solution with 3 wt% Na Cl and 0.5 wt% H2O2 leads to mechanical properties deterioration of 7475-T761 aluminum alloy. Moreover, the elongation decreases significantly. This is mainly attributed to electrochemical corrosion and hydrogen embrittlement, in which corrosion plays a major role. Tensile stress promotes the degradation of the mechanical properties by accelerating the pitting corrosion and hydrogen embrittlement.  相似文献   

5.
The mechanisms of corrosion inhibition of AA2024-T3 by vanadates were studied using chronoamperometry, polarization curves and adsorption isotherms. The electrochemical behaviour of clear solutions containing metavanadates and orange solutions containing decavanadates was clearly distinctive. Metavanadates reduced the kinetics of oxygen reduction to an extent similar to chromates. Corrosion inhibition of AA2024-T3 by metavanadates was very rapid and it might occur by the formation of an adsorbed layer. Reduction of clear metavanadate solution was very slow. Approximately 35 min were required to develop a monolayer of a reduced vanadate species. The adsorption of the inhibitor likely blocked reactive sites on intermetallic particles, discouraging the oxygen reduction reaction (ORR). Adsorption of the inhibitor on the Al matrix could also displace Cl ions, increasing the stability of the passive film and reducing the breakdown of S-phase particles. In contrast, decavanadates were shown to be poor inhibitors of the ORR. A sharp current spike was observed after injection of decavanadates for both Cu and AA2024-T3 at various applied cathodic potentials. Integration of the current peaks suggested the formation of several monolayers of a reduced vanadate species. The formation of several monolayers was in line with the poor performance of decavanadates as inhibitors of AA2024-T3 corrosion.  相似文献   

6.
The deterioration of AA2024, AA6061 and AA7475 anodised in an environmentally-compliant tartaric acid/sulphuric acid electrolyte has been examined as a function of the immersion time in the electrolyte after termination of anodising. By transmission electron microscopy and scanning electron microscopy, degradation of the porous oxide film was qualitatively observed on AA2024. Electrochemical impedance spectroscopy revealed that AA2024 and AA7075 were more sensitive to prolonged immersion in the anodising electrolyte compared with AA6061, due to increased barrier layer thinning rates and increased susceptibility to localized corrosion. Salt spray tests confirmed the previous, indicating decay of anticorrosion performance for AA2024 and AA7075.  相似文献   

7.
The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in an acidic NaCl solution is investigated by electrochemical investigation and morphology characterization. Localized corrosion initiated from intermetallic particles could be observed in the solution with and without NaNO3. The nitrate plays a controversial role in the corrosion of 7075-T651 aluminum alloy. It could enhance the performance of passive film and reduce the probability of pitting corrosion initiation. However, the pitting corrosion would be promoted by nitrate, once stable pitting corrosion is initiated.  相似文献   

8.
SEM and EDS studies were carried out to characterise filiform attack on a cerated AA2024-T351 aluminium alloy with a polyurethane topcoat. The filiforms developed on AA2024-T351 were sectioned, stripped of corrosion product and etched to reveal the grain structure. Examination of sections through the filaments and the filaments themselves, revealed severe local attack in the form of pitting resulting in grain etch out, grain boundary attack and subsurface etch out. Chloride ions were detected deep within pits and the subsurface etch out. The observations were similar to those found with filiform corrosion on chromated and coated surfaces. The observations led to development of a filiform corrosion model naming the volume expansion of the corrosion product as the principal cause for delamination.  相似文献   

9.
Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs) in its microstructure. In this work the corrosion behaviour of AA 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. TEM/EDS observations on non-corroded samples evidenced the heterogeneous composition within the IMs. In addition, SEM observations showed that intermetallics with the same nominal composition present different reactivity, and that both types of coarse IMs normally found in the alloy microstructure are prone to corrosion. Moreover, EDS analyses showed important compositional changes in corroded IMs, evidencing a selective dissolution of their more active constituents, and the onset of an intense oxygen peak, irrespective to the IM nature, indicating the formation of corrosion products. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte.  相似文献   

10.
The surface corrosion behavior of an AA2024-T3 aluminium alloy sheet after friction stir welding was investigated by using an “in-situ observation” method. SEM observations showed that the density and degree of the pitting corrosion in the shoulder active zone were slightly larger compared to the other regions on the top surface. The origins of the pitting corrosion were in the regions between the S phase particles and the adjacent aluminium base. The effect of Al-Cu-Fe-Mn-(Si) intermetallic compounds on the pitting corrosion was attributed to their high self-corrosion potential which induced the anodic dissolution of the surrounding aluminium matrix.  相似文献   

11.
In order to characterise filiform corrosion on a commercial AA2024-T351 aluminium alloy, a detailed microscopical study using SEM and EDS was performed. One set of AA2024-T351 aluminium alloy samples was alkaline-cleaned and deoxidised and chromate conversion coated. Another set was alkaline-cleaned only. Both samples were similarly spray coated with a 42 μm clear polyurethane topcoat. Filaments were subjected to a range of specimen preparation techniques. Sections and top views examined by SEM revealed varying degrees of attack ranging from generalised etching without local attack to severe local attack in the form of pitting, resulting in grain etchout, grain boundary attack and subsurface etchout. EDS revealed the presence of chloride deep into the pits and the subsurface etchout.  相似文献   

12.
Cerium malate (CeMal) was tested as a corrosion inhibitor for AA2024-T3 in this work. Corrosion inhibition on bare AA2024-T3 indicated that the inhibiting effect was a result of the synergistic effect of cerium cations and maleic anions. The corrosion of AA2024-T3 was stagnated by greatly reducing the corrosion current when CeMal was present in NaCl solutions. CeMal was adsorbed on the surface of AA2024-T3 forming a protective film in the initial stage. Then, cerium cations transformed to cerium oxide/hydroxides, precipitating on the cathode sites to inhibit the further corrosion. The electrochemical impedance spectra results of the sol-gel coatings proved that CeMal was an effective corrosion inhibitor in the sol-gel coatings to provide corrosion protection for AA2024-T3.  相似文献   

13.
Initiation of localized corrosion upon high strength aluminum alloys is often associated with cathodic intermetallic particles within the alloy. Electrochemical measurements and metallurgical characterization have been made to clarify and quantify the physical properties of Al7Cu2Fe particles in AA7075-T651. Prior studies regarding either the stereology or electrochemical properties of Al7Cu2Fe are scarce. Quantitative microscopy revealed a significant population of Al7Cu2Fe in the alloy; comprising up to 65% of the constituent particle population and typically at a size of 1.7 ± 1.0 μm. It was determined that Al7Cu2Fe may serve as a local cathode in the evolution of localized corrosion of AA7075-T651 and is capable of sustaining oxygen reduction reactions at rates of several hundreds of μA/cm2 over a range of potentials typical of the open circuit potential (OCP) of AA7075-T651 in NaCl solution of various concentrations and pH. The presence of Al7Cu2Fe leads to the development of pitting at the particle–matrix interface.  相似文献   

14.
Corrosion sensitivity of a friction stir welded (FSW) AA2024-T3 aluminum alloy has been investigated using both normalized intergranular corrosion test (ASTM-G110) and local electrochemical open circuit potential measurements. In addition, Vickers microhardness and microstructural analysis have been performed.The HAZ close to the TMAZ is the most sensitive to intergranular corrosion because of the presence of continuous lines of S′(S) intergranular precipitates at grain boundaries. Pitting corrosion is due to the intermetallic particles. Their fragmentation produced by stirring effect modifies the pitting corrosion behavior. Microhardness variations depend on the relative volume fraction of GPB zones and S′(S) intragranular precipitates.  相似文献   

15.
The stress corrosion cracking behaviour of plate material of the aluminium alloys 2024‐T351, 8090‐T8171, 7475‐T651, and 7075‐T7351 was investigated performing constant load tests. Short transverse tensile specimens were permanently immersed in aerated aqueous 0.6 M Na2Cl solutions with additions of Na2SO4, NaNO3, NaHCO3, NH4HCO3, Na2HPO4, Na2SO3 or Na2CO3. The concentration of the added salts was 0.06 M. The applied stress was 100 MPa, except with 7075‐T7351 specimens, which were loaded at 300 MPa. Environment induced failure was not observed in neutral 0.6 M NaCl solution. The various salts added promoted intergranular stress corrosion cracking with the alloys 2024‐T351, 8090‐T8171, and 7475‐T651. Threshold stresses were generally below 100 MPa. For 8090‐T8171 exposed to chloride containing electrolytes with additions of sulfate, hydrogen phosphate, or sulfite, threshold stresses were approximately 100 MPa or higher. Similar results were obtained for 7475‐T651 plate when immersed in chloride‐hydrogen phosphate and chloride‐carbonate solutions. Alloy 7075‐T7351 was resistant against intergranular stress corrosion cracking. Specimens suffered pitting corrosion during immersion in the corrosive environments. Failure observed with 7075‐T7351, in particular when exposed to the chloride‐nitrate solution, was associated with reduction of cross‐sectional area due to pitting and transgranular stress corrosion cracking.  相似文献   

16.
The present work aims at evaluating the anti-corrosion behaviour of a novel pre-treatment based on bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) doped with cerium nitrate for application on hot dip galvanised steel and AA2024-T3 substrates. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS) and by the scanning vibrating electrode technique (SVET), during immersion in NaCl solutions. The electrochemical results showed that the pre-treatment provides excellent corrosion protection to the substrates. Furthermore, the results evidenced improved protection comparatively to the use of undoped BTESPT pre-treatments, both for galvanised steel and AA2024-T3. This improvement is most likely due to enhanced barrier properties of the film and additional active corrosion protection originated from the inhibiting action of the cerium-based inhibitor impregnated in the silane matrix.  相似文献   

17.
This work aims at investigating the corrosion protection effectiveness of multifunctional epoxy coatings modified with pigments such as ceramic nanocontainers loaded with corrosion inhibitor, chloride and water traps, applied on AA2024-T3. Characterizations on the morphology, composition and structure of the coatings were conducted. The corrosion resistance was studied by electrochemical impedance spectroscopy, localized electrochemical impedance spectroscopy and scanning vibrating electrode technique. The mechanical behaviour of the coatings was examined through nanoindentation and nanoscratching tests. Electrochemical and nanomechanical testing results, evidenced the improvement of the corrosion protective properties and mechanical behaviour of the coatings in the presence of the various pigments.  相似文献   

18.
Danqing Zhu 《Corrosion Science》2003,45(10):2177-2197
The corrosion protection of AA 2024-T3 by films of bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur silane) was studied in a neutral 0.6 M NaCl solution using potential transient, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results showed that a highly crosslinked or dense interfacial layer that developed between the silane film and the aluminum oxide is the major contribution to the corrosion protection of AA 2024-T3. The formation of this interfacial layer heavily restricts pit growth underneath via retarding the transport of corrosion products, as well as effectively blocks a number of cathodic sites available for cathodic reactions.  相似文献   

19.
Danqing Zhu 《Corrosion Science》2003,45(10):2163-2175
This study consists of two parts. In the first part, the corrosion of 2024-T3 aluminum alloy (AA 2024-T3) was studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results showed that the anodic S phase (Al2CuMg) particles dealloyed Al and Mg during the 3.5 h of immersion in a neutral 0.6 M sodium chloride (NaCl) solution; with the dealloying of Mg being the most severe. Simultaneously, a heavy dissolution was also observed for the surrounding Al matrix of the S phase particles. This Al dissolution is likely to be caused by a local alkalization resulting from the coupled cathodic reaction (water and/or oxygen reduction). Such corrosion in AA 2024-T3, however, can be inhibited efficiently after the treatment of bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur silane). The associated studies on bis-sulfur silane treated AA 2024-T3 will be presented in the second part.  相似文献   

20.
This work aims at studying the corrosion behaviour of AA2024-T3 pre-treated with bis-[triethoxysilylpropyl]tetrasulphide. Simultaneously, the work investigates the influence of the Cu-rich intermetallic particles on the formation of the silane film. The analytical characterisation of the silane films was performed by Auger electron spectroscopy and X-ray photoelectron spectroscopy. The corrosion performance of the pre-treated substrates was evaluated by electrochemical impedance spectroscopy. Atomic force microscopy associated with Kelvin probe was also used to determine the influence of the silane film on the Volta potential distribution on the alloy surface. The results show that copper present in the intermetallics plays an important role on the film formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号