首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of four derivatives of piperidinylmethylindoline-2-one on mild steel surface in 1 M HCl solution and its corrosion inhibition properties has been studied by a series of techniques, such as polarization, electrochemical impedance spectroscopy (EIS), weight loss and quantum chemical calculation methods. The values of activation energy (Ea) for mild steel corrosion and various thermodynamic parameters were calculated and discussed. Potentiodynamic polarization measurements showed that all inhibitors are mixed type. The degree of surface coverage was determined by using weight loss measurements and it was found that adsorption process of studied inhibitors on mild steel surface obeys Langmuir adsorption isotherm.  相似文献   

2.
The inhibition effect of Bis (benzimidazol-2-yl) disulphide (BIMDS) on corrosion behavior of mild steel (MS) in 1.0 M HCl and 0.5 M H2SO4 was studied using different techniques. These studies have shown that studied compound is a good inhibitor for MS in 1.0 M HCl and 0.5 M H2SO4 solutions. Inhibitor showed better performance in 0.5 M H2SO4 solutions than 1.0 M HCl. Polarization measurements indicated that BIMDS is a mixed-type inhibitor in both acid media. Adsorption of inhibitor molecules on the mild steel surface showed Langmuir isotherm model in both acid media.  相似文献   

3.
The effect of 2-mercaptobenzimidazole (2MBI) on the corrosion of Armco iron in NaCl media has been investigated in relation to the concentration of the inhibitor by various corrosion monitoring techniques. Surface morphology was studied by scanning electron microscopy (SEM). Results obtained revealed that 2MBI is a good anodic inhibitor. The addition of increasing concentrations of 2MBI moves the corrosion potential towards positive values and reduces the corrosion rate. EIS results show that the changes in the impedance parameters (Rt and Cdl) with concentrations of 2MBI is indicative of the adsorption of these molecules leading to the formation of a protective layer on iron surface. The adsorption of this compound is also found to obey Langmuir’s adsorption isotherm in NaCl.  相似文献   

4.
Inhibitory effect of three Schiff bases 2-{[(2-sulfanylphenyl)imino]methyl}]phenol (A), 2-{[(2)-1-(4-methylphenyl)methylidene]amino}-1-benznethiol (B), and 2-[(2-sulfanylphen-yl)ethanimidoyl)]phenol (C) on corrosion of mild steel in 15% HCl solution has been studied using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. The results of the investigation show that the compounds A and B with mean efficiency of 99% at 200 mg/L additive concentration have fairly good inhibiting properties for mild steel corrosion in hydrochloric acid, and they are as mixed inhibitor. All measurements show that inhibition efficiencies increase with increase in inhibitor concentration. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on mild steel surface. Adsorption of these inhibitors follows the Langmuir adsorption isotherm. Thermodynamic adsorption parameters (Kads, ΔGads) of studied Schiff bases were calculated using the Langmuir adsorption isotherm. Activation parameters of the corrosion process such as activation energies, Ea, activation enthalpies, ΔH, and activation entropies, ΔS, were calculated by the obtained corrosion currents at different temperatures. Obvious correlation was found between the corrosion inhibition efficiency and the calculated parameters. The obtained theoretical results have been adapted with the experimental data.  相似文献   

5.
The influences of surface films formed by open-circuit exposure to neutral solutions on the corrosion and electrochemical behaviour of pure Mg and Mg alloys have been examined by in situ ellipsometric analysis and electrochemical measurements. Surface films mainly composed of Mg(OH)2 grew rapidly during open-circuit exposure to 0.1 M NaCl and 0.1 M Na2SO4 solutions. These films had protective ability to passivate Mg in the solutions. However, they suffered local breakdown under anodic polarisation. The passive current density decreased and the breakdown potential increased with increasing immersion time and film thickness. Influences of purity and alloying elements on the passivity and its breakdown of Mg have been discussed.  相似文献   

6.
Ex-situ X-ray diffraction measurements of a small amount of samples extracted from wet corrosion products freshly formed on a pure iron and iron-2 mass% silicon surfaces have been conducted using synchrotron radiation for clarifying the formation process of corrosion products. The results showed that γ-FeOOH was formed on the outer side of wet corrosion products formed on the surface of the pure iron by sodium chloride solution, while γ-FeOOH, α-FeOOH, Fe3O4, and green rusts were formed on the inner side. On the other hand, in comparison to the case of the pure iron, a significant formation of β-FeOOH was observed in the iron-silicon alloy. Influences of silicon alloying on corrosion products formed by aqueous solution containing sulfate ions were also observed. Furthermore, in-situ diffraction measurements by a conventional X-ray source were conducted for analyzing corrosion products formed on the pure iron and iron-silicon alloy surfaces by cyclic exposure to wet and dry atmospheres. The results obtained by the in-situ diffraction and ex-situ diffraction measurements on the corrosion products were consistent.  相似文献   

7.
The physical behavior of three selected thiazole derivatives, namely 2-Amino-4-(p-tolyl)thiazole (APT), 2-Methoxy-1,3-thiazole (MTT) and Thiazole-4-carboxaldehyde (TCA) at iron (1 1 0) surface dissolved in aqueous solution were studied via molecular dynamics (MD) simulations. From the calculated binding energies, APT showed preferred adsorption on the steel surface among the three tested thiazole derivatives. The inhibition performance of the three thiazoles on the corrosion of mild steel in 0.5 M H2SO4 solutions was investigated at 25 °C. Measurements were conducted under various experimental conditions using weight loss, Tafel polarization and electrochemical impedance spectroscopy. Electrochemical frequency modulation (EFM) technique was also employed here to make accurate determination of the corrosion rates and test validation of the Tafel extrapolation method for measuring corrosion rates. Polarization curves showed that the three thiazole derivatives were of mixed-type inhibitors for mild steel corrosion in 0.5 M H2SO4 solution. EFM results were in agreement with other traditional chemical and electrochemical techniques used in corrosion rate measurements. Chemical and electrochemical measurements are consistent with computational study that APT is the most effective inhibitor among the tested thiazoles.  相似文献   

8.
A study of the effect of lithium content (1, 3 and 5 wt.%) and heat treatment (400 °C during 144 h) on the corrosion behavior of Ni3Al alloy has been carried out in a 62 mol.%Li2CO3-38 mol.%K2CO3 mixture at 650 °C using electrochemical techniques. Employed electrochemical techniques included potentiodynamic polarization curves, linear polarization resistance, LPR, electrochemical impedance spectroscopy, EIS, and electrochemical noise, measurements EN. Results have shown that the alloys exhibited an active-passive behavior regardless of the heat treatment. For alloys without heat treatment, the most corrosion resistant was the Ni3Al base alloy, but when they were heat treated, the most corrosion resistant was the alloy containing 3%Li. EIS results showed that for short immersion tests, the corrosion process was under diffusion control, but for longer exposure times, the presence of a protective scale was evident. All the alloys were highly susceptible to a localized type of corrosion according to EN measurements and supported by SEM micrographs.  相似文献   

9.
Recent advances in secondary ionization mass spectrometry (SIMS) techniques allow the resolution of differences in the natural abundances of the isotopes of 18O and 16O, and their ratio in both conducting and insulating materials. These techniques have been used in this study to measure the oxygen isotope signatures and their spatial distribution in corrosion products formed during high-temperature oxidation of steel boiler tubes from fossil-fuel power plants. The data obtained in this study are interpreted in terms of oxygen isotope fractionation between the available oxygen reservoirs and oxides formed on or within the metal. Results are presented for three different corrosion scenarios: steamside/fireside corrosion, aqueous phosphate corrosion and corrosion due to H2 damage. Constant, but isotopically depleted values observed in magnetites formed during steamside corrosion and H2 damage are indicative of interaction with locally derived meteoric water (which constitutes the boiler feed water). In contrast, isotope distributions in maricite (NaFePO4) suggest equilibrium fractionation between this phase and precursor magnetite. Oxygen isotope patterns in fireside magnetites exhibit a complex zoning that requires at least two isotopically distinct species with significantly different transport rates.  相似文献   

10.
Corrosion of pure metals Fe, Ni, Co, Cr in molten glass was studied at 1050 °C by electrochemical techniques and thickness losses measurements. These two techniques are in good agreement. The electrochemical apparatus was used to determine the formal potential of some redox couples, to identify the corrosion reactions and to evaluate the corrosion rates.Among tested metals, only chromium is a passivable material. The passivation is due to the formation of a chromium oxide (Cr2O3) protective layer at the glass/metal interface. Then superalloys used in molten glass must contain a high chromium level to resist to corrosion.  相似文献   

11.
The binary bronze alloy Cu-6Sn corrosion, and formation and properties of corrosion product layer (patinas) during 12 days of exposure to 15 mM Na2SO4 aqueous solution were investigated by a range of diverse experimental techniques. For the reasons of comparison, some techniques were applied, in parallel, to copper. Gravimetric measurements revealed lower corrosion rates of bronze than those of copper, probably caused by the presence of tin compounds in the corrosion product layer. Cyclic voltammetry results showed that the oxidation processes on bronze are affected by the formation of tin oxide species. Electrochemical impedance spectroscopy showed that, as opposed to copper which produced only two time constants, bronze corrosion resistance was dominated by the additional high-frequency time constant representing redox processes occurring at the corrosion product surface. SEM, ATR FTIR and PIXE results suggest that Cu-6Sn bronze corrosion in 15 mM Na2SO4 solution was impeded by the formation of two-layered structure of corrosion products that formed due to selective dissolution of copper at the layer/solution interface, leaving the outer layer enriched in highly corrosion resistant Sn oxi/hydrohide species.  相似文献   

12.
A time-dependent finite element model was developed to simulate the corrosion of zinc and aluminum coatings, galvanically coupled to a mild steel substrate in deaerated 0.01 M H2SO4 electrolyte. The simulations of galvanic corrosion for each of the coatings were compared to experimental measurements of open circuit potential, and changes in coating geometry measured via surface profilometry. Good agreement between the model predictions and corrosion tests were observed initially for both coatings. However, in the case of the zinc coating, divergence was observed between the simulation and the corrosion test after approximately 40 min, due to a decrease in the reactivity of the zinc surface.  相似文献   

13.
ALMERAYA     《腐蚀工程科学与技术》2013,48(4):288-291
Abstract

Electrochemical studies of the hot corrosion of AISI SA 213 TP 347H stainless steel have been carried out in a mixture of 80 wt-% V2O5 + 20 wt-% Na2SO4. The range of temperatures was 540–680°C at intervals of 20 K and the techniques employed included corrosion potential, Tafel polarisation, and electrochemical noise measurements. At 620°C the corrosion potential, measured against a platinum reference electrode (PRE), decreases from ?350 mV to ?480 mV and remains at this level during the first 8 h. Using Tafel polarisation, it was found that, with change in the temperature from 540 to 680°C, the corrosion potential decreased on initial heating to 600°C and then increased again at higher temperatures, the corrosion rate increasing continuously with increasing temperature. However, at constant temperature (620°C) the corrosion rate increased with time during the first 8 h, after which it decreased and reached a steady state after 27 h, probably owing to the formation of a surface film. Electrochemical noise measurements, of both voltage and current noise, indicated a combination of general corrosion, probably owing to the formation of a surface layer, and localised corrosion in the grain boundaries.  相似文献   

14.
The corrosion protection of mild steel in a 2.5 M H2SO4 solution by 4,4-dimethyloxazolidine-2-thione (DMT) was studied at different temperatures by measuring changes in open circuit potential (OCP), potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). Corrosion current densities calculated from EIS data were comparable to those obtained from polarisation measurements. Results showed that DMT inhibited mild steel corrosion in a 2.5 M H2SO4 solution and indicated that the inhibition efficiencies increased with the concentration of inhibitor, but decreased proportionally with temperature. Polarisation curves showed that DMT is a mixed-type inhibitor. Changes in impedance parameters suggested the adsorption of DMT on the mild steel surface, leading to the formation of protective films. The DMT adsorption on the mild steel surface followed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters for dissolution and adsorption were investigated. Comprehensive adsorption (physisorption and chemisorption) of the inhibitor molecules on the mild steel surface was suggested based on the thermodynamic adsorption parameters.  相似文献   

15.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

16.
G.A. Zhang 《Corrosion Science》2009,51(8):1589-263
Electrochemical corrosion behavior of X65 steel in CO2-saturated formation water in the absence and presence of acetic acid was studied by electrochemical measurements, scanning vibrating micro-electrode (SVME), localized electrochemical impedance spectroscope (LEIS) and surface analysis techniques. It is found that, when steel is immersed in formation water, the dissolution of Fe dominates the anodic process and the steel is in active dissolution state. Adsorption of intermediate product on the electrode surface results in generation of an inductive loop in the low frequency range of EIS plot. As corrosion proceeds, the concentration of Fe2+ in the solution increases. When the product of [Fe2+] × [] exceeds solubility product of FeCO3, FeCO3 will deposit on the electrode surface, and protects the steel substrate from further corrosion. The steel is in a “passive” state. When the electrode surface is completely covered with FeCO3 film, the inductive loop in the low frequency range disappears. In the presence of acetic acid in formation water, the cathodic reaction will be enhanced due to the direct reduction of undissociated acetic acid. Addition of acetic acid degrades the protectiveness of corrosion scale, and thus, enhances corrosion of steel by decreasing the FeCO3 supersaturation in solution.  相似文献   

17.
The inhibition effect of four double Schiff bases on the corrosion of mild steel in 2 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The inhibitors were adsorbed on the steel surface according to the Langmuir adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process were calculated and discussed. Kinetic parameters activation such as Ea, ΔH∗, ΔS∗ were evaluated from the effect of temperature on corrosion and inhibition processes. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies.  相似文献   

18.
The objective of this work is to provide additional insight on the influence of (2E)‐3‐amino‐2‐phenylazo‐but‐2‐enenitrile and its derivative as corrosion inhibitors for copper in 0.5 M HNO3. Electrochemical techniques (potentiodynamic polarization, polarization resistance and impedance spectroscopy) as well as weight loss measurements have been employed to study the corrosion inhibition. The investigated compounds have shown inhibition efficiency in 0.5 M HNO3. Inhibition efficiency of these compounds has been found to vary with the concentrations of the compounds. The adsorption of these compounds on the copper surface from the acid solution has been found to obey Langmuir adsorption isotherm. The results revealed that the compounds are mixed type inhibitors. The effect of temperature on the inhibition efficiency was studied.  相似文献   

19.
The corrosion behavior of SAE-1020 carbon steel in H2S-containing solutions with different concentration of HCl at 90 °C was investigated by weight loss, electrochemical measurements, SEM and XRD analysis. The results showed that the corrosion rate of carbon steel increased with increasing HCl concentration. Uniform corrosion was found on the carbon steel surface in H2S + HCl solutions, while corrosion cavities were observed in the solution only containing H2S. The ratio of Faradaic process of total corrosion process increased with the increase of HCl concentration. The corrosion products were solely composed of mackinawite in the H2S-containing solutions with or without HCl.  相似文献   

20.
The corrosion behavior of an iron-aluminum alloy with bcc structure and a composite of an iron-aluminum and a steel was studied in H2SO4 solution. The corrosion resistance deteriorates with increasing aluminum content of an iron-aluminum alloy. XPS measurements showed a magnetite formation on the corroded surface and a preferential corrosion of iron. The corrosion resistance for the composite of an iron-aluminum alloy and a CrMo steel is comparable to that of a CrMo steel. This implies that a corrosion-resistant composite is achievable by controlling the aluminum content of the Fe-Al alloy without the additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号