首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxidation of an Fe-Al alloy containing 3 at.% Al and of four ternary Fe-Cr-Al alloys with the same Al content plus 2, 3, 5 or 10 at.% Cr has been studied in 1 atm O2 at 1000 °C. Both Fe-3Al and Fe-2Cr-3Al formed external iron-rich scales associated with an internal oxidation of Al or of Cr+Al. The addition of 3 at.% Cr to Fe-3Al was able to stop the internal oxidation of Al only on a fraction of the alloy surface covered by scales containing mixtures of the oxides of the three alloy components, but not beneath the iron-rich oxide nodules which covered the remaining alloy surface. Fe-5Cr-3Al formed very irregular external scales where areas covered by a thin protective oxide layer alternated with others covered by thick scales containing mixtures of the oxides of the three alloy components, undergrown by a thin layer rich in Cr and Al, while internal oxidation was completely absent. Conversely, Fe-10Cr-3Al formed very thin, slowly-growing external Al2O3scales, providing an example of third-element effect (TEE). However, the TEE due to the Cr addition to Fe-3Al was not directly associated with a prevention of the internal oxidation of Al, but rather with the inhibition of the growth of external scales containing iron oxides. This behavior has been interpreted on the basis of a qualitative oxidation map for ternary Fe-Cr-Al alloys taking into account the existence of a complete solid solubility between Cr2O3 and Al2O3.  相似文献   

2.
Thermogravimetric (TG) experiments have been carried out to study the kinetics of hot corrosion of Fe, Cr and Ni, covered by a molten KCl-ZnCl2 mixture of a composition close to the eutectic (50 mol% KCl-50 mol% ZnCl2). Furthermore binary and ternary phase diagrams were calculated in order to describe the corrosion process. The tests were conducted at a temperature of 320 °C in an atmosphere consisting of argon and oxygen. For iron different stages are observed in a TG curve. They can be attributed to the different reaction steps of iron chloride formation (incubation phase), oxide precipitation (linear stage) and scale formation (parabolic or logarithmic stage). Based on these observations a model, described by Spiegel [A. Spiegel, Molten Salt Forum 7 (2003) 253], is confirmed. For Cr and Ni these stages are not observed. At 8 vol% O2 only slight oxidation of Cr and Ni was observed accompanied by evaporation of the salt deposit. At 16 vol% O2 the rate of oxidation increases and the experiments yield a curve that is either parabolic or logarithmic for both Ni and Cr. As a result it is shown that the solubility of iron chloride in the KCl-ZnCl2 melt is higher than the solubility of nickel chloride and chromium (III) chloride in the KCl-ZnCl2 melt. This enables a higher diffusibility of iron chloride to the upper region of the melt where a higher oxygen partial pressure (p(O2)) is present leading to a higher oxidation rate of iron.  相似文献   

3.
H. Asteman 《Corrosion Science》2007,49(9):3626-3637
The paper presents the results from an investigation studying the ability of pre-oxidized metals and alloys to withstand chlorine attack in the form of gaseous HCl. The materials under investigation were pure Fe (s), Cr (s), Ni (s), and a commercial 18Cr-10Ni-Fe (304) alloy. The samples were pre-oxidized in different well defined environments, dry 10 vol.% O2 (g) + N2 (bal.), 10 vol.% O2 (g) + 5 vol.% H2O (g) + N2 (bal.) and 10 vol.% O2 (g) + 250 vppm SO2 (g) + N2 (bal.) for 24 h at 400 °C using a horizontal tube furnace. Afterwards the oxide films were characterized by GI-XRD, FEG-SEM, XPS and ToF-SIMS. The samples were then exposed further in 10 vol.% O2 (g) + 500 vppm HCl (g) + x (x = 5 vol.% H2O (g), 250 vppm SO2 (g)) + N2 (bal.). The exposure time was 100 h and after the exposures during the cool down process the reaction chamber was flushed with dry 10 vol.% O2 (g) + N2 (bal.). The corroded samples were then examined by the same techniques mentioned before. HCl (g) showed mainly to be aggressive toward the Fe (s) samples that form a relatively thick and porous oxide scale consisting of layered Fe2O3 (s)/Fe3O4 (s) during pre-oxidation, and the aggressiveness did not depend on the pre-oxidation conditions. All the other materials formed thin and dense oxides (20-100 nm) during pre-oxidation, and they did not suffer accelerated oxidation caused by HCl (g) during the subsequent exposure. The only exception was Ni (s) that had been pre-oxidized in an atmosphere containing SO2 (g), in this case Ni sulphides and sulphates were formed during pre-oxidation which in turn caused accelerated oxidation to Ni when subsequently exposed to HCl (g). HCl (g) readily reacts with NiSO4 (s) and Ni3S2 (s) and forms NiCl2 (s) and SO3 (g).  相似文献   

4.
The oxidation behaviour of single crystal PWA 1483 at 950 °C was investigated by means of XRD, SEM and EDS. The parabolic oxidation behaviour, as defined by mass gain and the respective oxide layer thicknesses, is characterized by a parabolic rate constant of about 4 × 10−6 mg2/(cm4 × s) and the formation of a multi-layered oxide scale. An outer scale contains a Ti-bearing thin film composed of TiO2 and NiTiO3 but mostly Cr in Cr2O3 and (Ni/Co)Cr2O4 besides NiTaO4. This outer scale is connected to a discontinuous layer of Al2O3 and an area of γ′-depletion within the base material.  相似文献   

5.
The corrosion behaviour of 16%Cr and 16%Cr-4%Al ODS ferritic steels in different heat treatment conditions has been investigated in a supercritical water environment. The exposed coupons were analyzed using scanning electron microscopy (SEM), electron probe micro analysis (EPMA), Auger and X-ray diffraction analysis (XRD). It was found that the formation of oxides depends on the chemical composition and not on the metallurgical condition. The Al-free alloys formed a monolayer oxide film composed of (Cr, Fe)2O3. The Al-containing alloys formed an oxide film composed of an outer layer of hematite and magnetite and an inner layer of Al2O3. The oxidation mechanisms are discussed.  相似文献   

6.
H.T. Ma  C.H. Zhou  L. Wang 《Corrosion Science》2009,51(8):1861-1867
Pure Fe, Cr and Fe-Cr binary alloys were corroded in O2 containing 298 ppm KCl vapour at 750 °C. The corrosion kinetics were determined, and the microstructure and the composition of oxide scales were examined. During corrosion process, KCl vapour reacted with the formed oxide scales and generated Cl2 gas. As Cl2 gas introduced the active oxidation, a multilayer oxide scales consisted of an outmost Fe2O3 layer and an inner Cr2O3 layer formed on the Fe-Cr alloys with lower Cr concentration. In the case of Fe-60Cr or Fe-80Cr alloys, monolayer Cr2O3 formed as the healing oxidation process. However, multilayer Cr2O3 formed on pure Cr.  相似文献   

7.
A crack-free Al diffusion coating has been developed to improve the oxidation resistance of Ti22Al26Nb. It was produced by a two-step method; an Al film was deposited on the substrate alloy by arc ion plating followed by a diffusion process conducted at 873 K in pure Ar to form the Al diffusion coating. The two-step method lowers the temperature required to form the diffusion coating, which dramatically decreases the thermal stress developed in the coating and results in it being crack-free. The oxidation resistance of the non-coated Ti22Al26Nb alloy in isothermal and cyclic tests in air at 1073 K was poor, but the coated specimens possessed excellent oxidation resistance because a protective α-Al2O3 scale formed. The life of the Al diffusion coating greatly depends upon the rapid initial formation of a protective Al2O3 scale and interdiffusion between coating and substrate. Once the stable Al2O3 scale has formed and the composition changes from (Ti, Nb)Al3 into (Ti, Nb)Al2, the coating has a long life.  相似文献   

8.
The Mo3Si alloys with different aluminum contents were fabricated by the arc-melting and drop-casting technique, heat treated and then exposed to air at 700, 800, 900 and 1000 °C in order to assess their oxidation behavior. Line scan studies led to the assumption that the oxide scale thermally grown at 1000 °C was composed of SiO2 which was located closer to the alloy matrix and Al2O3 around the outer surface of the oxidized sample, while the Mo oxide volatilized at this oxidation temperature. The results also showed that the unalloyed sample (Mo3Si) underwent a pest reaction in a short time of exposure, while the sample with 16 at.% Al exhibited the best oxidation behavior, which could be attributed to the formation of SiO2 and Al2O3 in the oxide scale.  相似文献   

9.
Initial stage oxidation characteristics of the modified 9Cr–1Mo steel in ambient air at 650 °C have been investigated, for exposure times ranging from 5 to 500 h. Oxygen flux from the gas phase causes high initial oxidation rate, but the growth kinetics do not follow parabolic law. In “as-received” condition, binary oxides of Fe and Cr were found as native oxides. Upon oxidation, segregation of Mn resulted in the formation of MnCr2O4 along with FeCr2O4 and binary oxides of Fe, Cr and Mn. Thus, the initial oxide scale constitutes multiple oxides with delineated interface, unlikely to have a layered structure.  相似文献   

10.
A thermodynamic model based on the ‘Macroscopic Atom’ approach is proposed to assess the effect of alloying element segregation on the adhesion of metallic coating on metallic substrate. The interfaces that occur in hot-dip galvanized steels are considered, which include: Zn/Fe, Zn/Fe2Al5, Zn/FeZn13, FeZn13/Fe2Al5, and Fe2Al5/Fe. The effect of the alloying element on the work of adhesion of these interfaces is investigated, which includes Mg, Al, Si, P, Ti, V, Cr, Mn, Fe, Ni, Zn, Nb, Mo, Sn and Bi. Among these elements, Bi, Sn and Mg are predicted to decrease the work of adhesion of the Zn/Fe interface, whereas P, Nb, Mo, V, Ti and Ni tend to enhance this adhesion. The effect of element M (M = Al, Si, Cr, Mn) is positive when it exists in the zinc coating or negative when it occurs in the iron substrate. Among these interfaces, the Fe2Al5/Fe interface with a value of 3.8 J m−2 is the strongest, whereas the Zn/FeZn13 interface with of a value of 1.7 J m−2 is the weakest. Delamination of the coating upon deformation is predicted to occur along the FeZn13/Fe2Al5 and Zn/Fe2Al5 interfaces. This agrees with microscopic observations of hot dip galvanized steel after tensile testing.  相似文献   

11.
This paper focused on the effect of cooling rate on oxidation resistance and ignition temperature (Ti) of AM50 alloy. Y addition of 0.0 wt%, 0.15 wt%, 0.28 wt%, 0.45 wt% and 1.00 wt%, respectively was added to the AM50 alloy. The result showed that the oxidation resistance was directly affected by the microstructure. Rapid solidification (RS) had a positive effect on improving the oxidation resistance. It is noticeable that no Al2Y intermetallic compound was found in the microstructure after RS. Elemental Y dissolved in the solid solution increased with increasing Y addition after RS. It is confirmed that Y addition dissolved in the solid solution and phase distribution were key factors for improving the oxidation resistance.  相似文献   

12.
TiVCrAlSi high entropy alloy coatings were deposited on Ti-6Al-4V alloy by laser cladding. SEM, XRD and EDS analyses show that, the as-clad coating is composed of (Ti,V)5Si3 and a BCC solid solution. After annealing at 800 °C for 24 h under vacuum, the coating is composed of (Ti,V)5Si3, Al8(V,Cr)5, and a BCC solid solution. The temperature-dependent phase equilibrium for the coating material calculated by using the CALPHAD method, indicates that above 880 °C the stable phases existing in the coating material are a BCC solid-solution and (Ti,V)5Si3. When the temperature is below 880 °C, the stable phases are (Ti,V)5Si3, Al8(V,Cr)5, and a BCC solid solution. In order to validate the calculation results, they were compared with TiVCrAlSi alloy samples prepared by arc melting, encapsulated in quartz tubes under vacuum, annealed at 400-1100 °C for 3 days and water-quenched. XRD analysis shows that the experimental phase composition agrees with the thermodynamic calculations. After vacuum annealing, there is a small increase of hardness for the laser clad TiVCrAlSi coating, which is due to the formation of Al8(V,Cr)5. The oxidation tests show that the TiVCrAlSi coating effectively improves the oxidation resistance of Ti-6Al-4V at 800 °C in air. The formation of a dense and adherent scale consisting of SiO2, Cr2O3, TiO2, Al2O3 and a small amount of V2O5 is supposed to be responsible for the observed improvement of the oxidation resistance.  相似文献   

13.
Composites of Cr3C2-NiCr provide superior oxidation resistance to WC-Co composites, which has seen them applied extensively to components subjected to combined high temperature erosion and oxidation. This work characterises the variation in oxidation mechanism of thermally sprayed Cr3C2-NiCr composites at 700 °C and 850 °C as a function of heat treatment. Carbide dissolution during spraying increased the Ni alloy Cr concentration, minimising the formation of Ni oxides during oxidation. Compressive growth stresses resulted in ballooning of the oxide over the carbide grains. Carbide nucleation with heat treatment reduced the Ni alloy Cr concentration. The oxidation mechanism of the composite coating changed from being Cr based to that observed for NiCr alloys.  相似文献   

14.
Xuemei Yi 《Corrosion Science》2010,52(5):1738-1745
The oxidation of β-Si6−zAlzOzN8−zs (= 1, 2, and 3) prepared by a combination of combustion synthesis (CS) and spark plasma sintering (SPS) was investigated. The oxidation experiments were conducted at temperatures of 1000, 1200, and 1400 °C in air for 100 h (360 ks). Their oxidation kinetics follow a parabolic rate law, and the deviation from that increases with a decrease in the z value. The results of XRD and EPMA show that the oxide formed on β-SiAlONs (= 1 and 2) consists of silica and mullite, and on β-SiAlON (= 3) of only mullite.  相似文献   

15.
A study of the effect of Cr content on the microstructure and isothermal oxidation behaviour of four alloys from the Nb-Cr-W system has been performed. Selection of specific alloy compositions has been based on the ternary isothermal sections. Oxidation experiments were conducted in air at 900 and 1300 °C for 24 h under isothermal conditions. Weight gain per unit area as function of the temperature has been used to evaluate the oxidation resistance. The phases present in the alloys and the oxide scales were characterized by XRD, SEM, and EDS. Microstructure consists of Nb solid solution and NbCr2, Laves phase. The oxidation kinetics follows a parabolic behaviour at 1300 °C; the addition of 30% Cr resulted in the significant reduction of the parabolic oxidation rate. At 900 °C, alloys with higher Cr content exhibit higher oxidation rates in comparison to alloys with lower Cr content. The oxidation products are a mixture of CrNbO4 and Nb2O5 and the amount of each oxide present in the mixture is related to the intermetallic phase content and the oxidation temperature. The characterization results delineate the effect of the Cr content on the oxidation mechanisms of these alloys that represent a promising base for high-temperature alloy development.  相似文献   

16.
Dengzun Yao 《Corrosion Science》2010,52(8):2603-2611
A Mo-Si-Al coating, which is mainly composed of Mo(Si,Al)2 and Mo5(Si,Al)3, was developed to protect a Nbss/Nb5Si3 in situ composite by air plasma spraying. After oxidation at 1250 °C, the oxidation curve followed parabolic law and even after oxidation for 100 h, the weight gain of Mo-Si-Al coating was 8.24 mg/cm2. The surface of the oxidized samples became flatter and smoother as time increased due to the formation of SiO2 glass. Moreover, the microstructure of Mo-Si-Al coating changed and a layer structured interdiffusion zone was formed at the substrate-coating interface after oxidation.  相似文献   

17.
Iron(II) sulphides were precipitated by mixing FeCl2 · 4H2O (or FeSO4 · 7H2O) and Na2S aqueous solutions with various [Fe(II)]/[S(-II)] concentration ratios at [Fe(II)] = 0.1 mol L−1. They were analysed by micro-Raman spectroscopy and X-ray diffraction immediately after precipitation and after various times of ageing in suspension at room temperature. In any case, the initial precipitate was nanocrystalline mackinawite. Its Raman spectrum is made of two sharp peaks at 208 ± 1 and 282 ± 1 cm−1. For [Fe(II)]/[S(-II)] ? 1, ageing of the precipitate led to crystalline mackinawite, as testified by X-ray diffraction. The Raman spectrum of crystalline Fe(II) mackinawite shows three main peaks at 208, 256 and 298 cm−1. Drying of nanocrystalline mackinawite under an argon flow favoured crystallisation. The removal of interparticle and surface adsorbed water molecules led to coalescence of the nanoparticles and increase of the size of the domains of coherent scattering. For [Fe(II)]/[S(-II)] = 1/2, the precipitate still consisted of nanocrystalline mackinawite after 70 days of ageing. Finally, the early oxidation stages of mackinawite led to the formation of Fe(III) cations inside the tetrahedral sites of the crystal structure. The most oxidised form of Fe(III)-containing mackinawite is characterised by a Raman spectrum with sharp peaks at 125, 175, 256, 312 and 322 cm−1, and a large vibration band at 350-355 cm−1 that may be attributed to stretching modes of Fe(III)-S tetrahedrons. Analyses of the rust layers of a roman ingot that remained 20 centuries in the Mediterranean Sea revealed the presence of iron sulphides, more likely generated by sulphate-reducing bacteria. Micro-Raman analyses demonstrated the presence of nanocrystalline mackinawite and Fe(III)-containing mackinawite.  相似文献   

18.
Isothermal oxidation behaviour of two Ti(C,N)-based cermets (TiC-10TiN-16Mo-6.5WC-0.8C-0.6Cr3C2-(32-x)Ni-xCr, x = 0 and 6.4 wt%) was investigated in air at 800-1100 °C up to 2 h. Mass gains exhibited neither linear nor parabolic law during isothermal oxidation. The oxide scales formed at 800-1100 °C were multi-layered, consisting of NiO outerlayer, NiTiO3 interlayer and TiO2-based innerlayer. The internal oxidation zones formed at 1000-1100 °C consisted of Ti-based, Ni-based and Mo-based complex oxides. Cermet with 6.4 wt% Cr exhibited superior oxidation resistance, due to the presences of Cr0.17Mo0.83O2 in TiO2-based innerlayer of the oxide scale and Cr-rich Ti-based complex oxide in the internal oxidation zone.  相似文献   

19.
Model alloys Fe–9Cr, Fe–20Cr and Fe–20Cr–20Ni (wt.%) with Ce (0.05%, 0.1%) or Mn (1%, 2%) were exposed to Ar–20CO2 gas at 818 °C. Scales on Fe–9Cr alloys consisted of FeO and FeCr2O4, Fe–20Cr–(Ce) alloys formed only Cr2O3, and Fe–20Cr–(Mn) alloys formed Cr2O3 and MnCr2O4. All Fe–20Cr–20Ni alloys formed Fe3O4, FeCr2O4 and FeNi3. Cerium additions had little effects, but additions of 2% Mn significantly improved oxidation resistance of Fe–20Cr and Fe–20Cr–20Ni alloys. Most alloys also carburized. All alloys developed protective chromium-rich oxide scales in air. Different behavior in the two gases is attributed to faster Cr2O3 scaling rates induced by CO2.  相似文献   

20.
The aluminized coating on type 310 stainless steel prepared by high-activity Al pack cementation method has been annealed at 900 °C for 12 h to transform the brittle δ-Fe2Al5 phase into the more ductile β-FeAl phase. The microstructure is studied in detail with transmission electron microscopy. The thick outer layer has β-(Fe, Ni)Al as matrix with cube-like Cr2Al precipitates. The interfacial layer has a thin layer of metastable FCC phase (layer I) and then mixed β-(Fe, Ni)Al grains and α-(Fe, Cr) grains (layers II and III). The Cr2Al precipitates are present in the β-(Fe, Ni)Al grains in layer II but not in those in layer III, while β-FeAl precipitates are present in the α-(Fe, Cr) grains in both layers. The orientation relationships between various phases, the formation of the layers, and the precipitation of Cr2Al in β-(Fe, Ni)Al are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号