首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l−1) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l−1 BTA and 2 g l−1 SP showed optimum enhanced inhibition compared with their individual effects.  相似文献   

2.
The effects of common water contaminants of chloride (Cl), cupric (Cu2+) and ferric (Fe3+) ions, in four different mixture combination of Fe3+ + Cu2+, Cl + Fe3+, Cl + Cu2+ and Cl + Fe3+ + Cu2+, were examined on the corrosion behaviour of aluminium alloys in ethylene glycol-water solution, using mass loss technique. The highest material losses were recorded for the two alloys in ethylene glycol solution containing the combination of the chloride and the two heavy metal ions. The corrosivity of the solution in the presence of the combination of ions was in the order of Cl + Fe3+ + Cu2+ > Cl + Cu2+ > Cl + Fe3+ > Fe3+ + Cu2+. The results gave first-order kinetics with respect to aluminium in ethylene glycol solution-ion systems. Alloy 3SR exhibits maximum corrosion in all the solutions. It is concluded that the two commercial alloys in the solution polluted with all the three ions would not be able to survive for reasonable period of time without corrosion inhibitor.  相似文献   

3.
Corrosion inhibition of cold rolled steel in 0.5 mol L−1 sulphuric acid by a quaternary ammonium gemini surfactant, l,3-propane-bis(dimethyl dodecylammonium bromide) (designated as 12-3-12), in the absence and presence of chloride ions was investigated at different temperatures. The results revealed significant synergistic effect between gemini 12-3-12 and chloride ions for the corrosion protection of cold rolled steel in sulphuric acid, and that the novel composite inhibitor system containing cationic gemini surfactant and chloride ions was efficient and low-cost for steel corrosion inhibition in sulphuric acid medium, even when concentration of 12-3-12 was as low as 1 × 10−6 mol L−1. By fitting the obtained experimental data with Langmuir adsorption model and Arrhenius equation, some thermodynamic and kinetic parameters such as adsorption free energy, the apparent activation energy, and the pre-exponential factor were estimated. The adsorption mechanism of the gemini surfactant onto steel surface in acid medium in the absence and presence of chloride ions was also discussed, respectively.  相似文献   

4.
Aqueous solutions with 3 mol L−1 (M) diethanolamine (DEA) concentration are extensively used in the gas processing industry to remove acid gases. However, the degradation of the DEA and the formation of heat-stable salts (HSS) lead to severe corrosion problems. Even worse, equipment corrosion can be magnified by the unavoidable presence of sulphide acid and dissolved oxygen as a result of hydrocarbon (natural gases and crude oil) processing. The aim of this work is to study the combined corrosion effects of DEA, sulphide acid and oxygen on carbon steel. Electrochemical methods revealed that in the 3 M DEA medium without oxygen, corrosion processes are modulated by adsorbed DEA film formation. Furthermore, it was shown that the addition of oxygen and 15 × 10−3 mol L−1 (15 mM) H2S produced the formation of an adherent film on the carbon steel surface. Chemical analyses by EDAX revealed a homogeneous film of corrosion products composed of iron oxide and sulphide formed in DEA solution containing O2 and H2S, respectively. Equivalent circuits were used to estimate the parameters associated with ion diffusion through the formed corrosion films. The results showed that the presence of H2S induced the formation of thin iron sulphide films that provide protective properties to the metal. It is concluded that the presence of oxygen in a sweetening plant should be avoided as DEA degradation can be produced with the subsequent decrease in chelating process efficiency and the increase in corrosion problems.  相似文献   

5.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

6.
Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 °C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test [S.E. Ziemniak, M. Hanson, Corros. Sci. 44 (2002) 2209] after 10,000 h. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, revealed that miscibility gaps in two spinel binaries—Fe(Fe1−mCrm)2O4 and (Fe1−nZnn)Fe2O4—play a significant role in determining the composition and structure of the corrosion layer(s). Although compositions of the inner and outer corrosion oxide layers represent solvus phases in the Fe3O4-FeCr2O4 binary, zinc(II) ion incorporation into both phases leads to further phase separation in the outer (ferrite) layer. Recrystallization of the low zinc content ferrite solvus phase is seen to produce an extremely fine grain size (∼20 nm), which is comparable in size to grains in the inner layer and which is known to impart resistance to corrosion. Zinc(II) ion incorporation into the inner layer creates additional corrosion oxide film stabilization by further reducing the unit cell dimension via the substitution reaction
0.2Zn2+(aq)+Fe(Fe0.35Cr0.65)2O4(s)?0.2Fe2+(aq)+(Zn0.2Fe0.8)(Fe0.35Cr0.65)2O4(s)  相似文献   

7.
The inhibition efficiency (IE) of sodium dodecylsulphate (SDS) in controlling corrosion of carbon steel immersed in the environment containing 60 ppm of Cl, in the absence and presence of Zn2+ has been evaluated by weight-loss method. It is observed that SDS and Zn2+ individually are not good inhibitors. But their combination shows excellent IE. For example, 100 ppm of SDS has only 10% inhibition efficiency whereas 75 ppm of Zn2+ has 45% IE. Interestingly their combination shows 93% IE. This suggests that a synergistic effect exits between Zn2+ and SDS. The influence of pH on the IE of the SDS-Zn2+ system has been evaluated. The protective film has been analysed by Fourier transform infrared (FTIR) and fluorescence spectra. A suitable mechanism of corrosion inhibition is proposed based on the results obtained from weight-loss method, and FTIR and fluorescence spectra. It is found that in the absence of Zn2+, the protective film consists of Fe2+-SDS complex formed on the anodic sites of the metal surface. In the presence of Zn2+, the protective film consists of Fe2+-SDS complex and Zn(OH)2. The protective film is found to be UV-fluorescent.  相似文献   

8.
The efficiency of linear sodium decanoate, CH3(CH2)8COONa (noted NaC10), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l−1 of NaC10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C10)2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums.  相似文献   

9.
The electrochemical behaviour of Cu-40Zn alloy, in 3% NaCl medium pure and polluted by 2 ppm of S2− ions, has been studied in the absence and presence of the 3-amino-1,2,4 triazole (ATA) as corrosion inhibitor. Electrochemical measurements (polarisation curves and electrochemical impedance spectroscopy) showed that sulphides accelerate the alloy corrosion. The studies revealed that ATA inhibits both cathodic and anodic reactions, indicating a mixed type of inhibition. The inhibiting effect was higher in presence of S2− ions than in its absence. Scanning electron microscopy analysis showed that the inhibitor acts by preventing the adsorption of S2− ions, and formation of Cu2S at the alloy surface. The inhibition efficiency reaches 98% at a concentration of 5 × 10−3 M.  相似文献   

10.
A systematic study of the isothermal corrosion testing and microscopic examination of Fe3Al alloy in liquid zinc containing small amounts of aluminum (less than 0.2 wt.%) at 450 °C was carried out in this work. The results showed the corrosion of Fe3Al alloy in molten zinc was controlled by the dissolution mechanism. The alloy exhibited a regular corrosion layer, constituted of small metallic particles (diameter: 2-5 μm) separated by channels filled with liquid zinc, which represented a porosity of about 29%. The XRD result of the corrosion layer formed at the interface confirmed the presence of Zn and FeZn6.67. The corrosion rate of Fe3Al alloy in molten zinc was calculated to be approximately 1.5 × 10−7 g cm−2 s−1. Three steps could occur in the whole process: the superficial dissolution of metallic Cr in the corrosion layer, the new phase formation of FeZn6.67 and the diffusion of the dissolved species in the channels of the corrosion layer.  相似文献   

11.
The effect of cysteine on the corrosion of 304L stainless steel in 1 mol l−1 H2SO4 was studied using open-circuit potential measurements, anodic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). All the electrochemical measurements obtained in the presence of low cysteine concentration (10−6-10−5 mol l−1) presented the same behaviour as those obtained in the absence of cysteine, a passivated steel surface. However, for higher cysteine concentrations (10−4-10−2 mol l−1), a different behaviour was observed: the corrosion potential stabilized at a more negative value; an active region was observed in the anodic polarization curves and the electrochemical impedance diagrams showed an inductive loop at lower frequencies and a much lower polarization resistance. These results show that the presence of cysteine at high concentration turns the surface of 304L stainless steel electrochemically active, probably dissolving the passivation layer and promoting the stainless steel anodic dissolution. SEM experiments performed after immersion experiments at corrosion potential were in good agreement with the electrochemical results.  相似文献   

12.
The synergism between red tetrazolium (RT) and uracil (Ur) on the corrosion of cold rolled steel (CRS) in H2SO4 solution is first investigated by weight loss, potentiodynamic polarization, and atomic force microscope (AFM). Effects of inhibitor concentration (25-500 mg l−1), temperature (20-50 °C), and acid concentration (1.0-5.0 M) on synergism are discussed systematically. The results reveal that RT has a moderate inhibitive effect, and its adsorption obeys the Freundlich adsorption isotherm. For Ur, it has a poor effect. However, incorporation of RT with Ur significantly improves the inhibition performance, and produces synergistic inhibition effect.  相似文献   

13.
The effect of Pb2+ on polarization behavior of nickel has been investigated in 0.1 M NaClO4 + 10−2 M HClO4 + x M PbO solutions (x = 0, 10−5, 10−4, 10−3) at room temperature. The cyclic voltammogram has suggested that Pb2+ degrades the stability of the passive film on Ni. The corrosion potential of Ni shifted to the more noble direction and the anodic current peak of Ni dissolution decreased with increasing Pb2+ concentration in solution, indicating that Pb2+ suppresses significantly the anodic dissolution. The underpotential deposition (UPD) of lead on Ni in the potential range more noble than −0.215 V (SHE) corresponding to the equilibrium potential of the Pb2+ (10−3 M)/Pb electrode was confirmed by XPS and GDOES analyses. The anodic Tafel slope, b+, of Ni dissolution changed from b+ = 40 mV decade−1 in the absence of Pb2+ to b+ = 17 mV decade−1 in the presence of 10−4 or 10−3 M Pb2+, which was ascribed to the increase in active sites of Ni surface emerged as a result of electrodesorption of Pb adatoms. The roles of Pb adatoms in active dissolution and active/passive transition of Ni were discussed from the above results.  相似文献   

14.
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L−1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA]n polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases in solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L−1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper.  相似文献   

15.
To study the effect of ZrO2 particles on corrosion behaviour of Cr coating, steel samples were plated in Cr(VI) baths without and with ZrO2. The corrosion behaviour of plated samples was studied at different exposure times in a solution containing 0.01 mol l−1 H2SO4 + 0.5 mol l−1 Na2SO4 using cyclic voltammetry and impedance spectroscopy. The equivalent circuit model Re(QcRpore)(Qs[ORs]) was proposed to fit the corrosion process and the parameters Y0(Qc),Y0(Qs) and Rpore reflecting corrosion behaviour of samples were evaluated. From the results, it was found that samples plated in bath containing ZrO2 exhibited improved protective properties as a result of the structural characteristics of the coatings obtained; namely, the size and shape of pores.  相似文献   

16.
Galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution was tentatively evaluated with a newly developed multi-channel electrode technique in which the welded specimen was divided into nine working electrodes (WEs), reconstructed in resin, and connected individually to an imaginary ground level of an electric circuit via relay switches. This allows the WEs to join a galvanic couple and simultaneous measurement of participating current or open circuit potential of each WE. WEs were immersed together in 5.1 × 102 mol dm−3 or 2.1 × 10−4 mol dm−3 NaCl solutions, and spatial distribution of participating currents and open circuit potentials were monitored as a function of immersion time. The WE of the weldment acted as a cathode throughout the immersion period, while the other WEs of base steel became anodes or cathodes depending on their location, immersion time and concentration of the electrolyte solution. The ability of zinc-rich paint to protect the welded specimen as sacrificial anode was also investigated.  相似文献   

17.
The stability and compressibility of Langmuir films of dococyltriethylammonium bromide (C22TAB) and 1-octadecanol (C18OH) and their mixtures on water surfaces were first investigated. Langmuir-Blodgett films were transferred onto iron substrate. Their effect on corrosion of iron in carbon dioxide containing brine were investigated by electrochemical methods. The C18OH formed a thin homogenous film with molecular area 19.4 Å2 at 36 mN m−1 at water surface. The films of C22TAB and C22TAB/C18OH mixtures were less dense, with 31 Å2 molecular area at 36 mN m−1 at water surface. The corrosion rate of iron substrate was reduced by 95% by deposition film of C18OH, while the corrosion rate of iron was reduced by 60% for films of C22TAB and C22TAB/C18OH mixtures.  相似文献   

18.
We applied shadowgraphy and Mach-Zehnder interferometry to investigate concentration field of Zn2+ above a Zn/steel couple in 0.01 M NaCl. During galvanic corrosion, the marked changes in the concentration of Zn2+ were visualized in a thin solution layer less than 0.5 mm thick above zinc. The concentration profile of Zn2+ was also obtained by analyzing the deflection of interference fringes. The obtained concentration profile was in good agreement with that obtained by our group with a scanning probe technique. The formation of zinc corrosion products was also visualized, which occurring on the steel surface a certain distance away from zinc.  相似文献   

19.
The relation between corrosion resistance and microstructure of Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase has been investigated. In order to clarify the influence of microstructure evolution by rapid solidification on the occurrence of localized corrosion such as filiform corrosion, several Mg97.25Zn0.75Y2 (at. %) alloys with different cooling rates were fabricated by the gravity casting, copper mould injection casting and melt-spinning techniques and their corrosion behavior and microstructures were examined by the salt immersion tests, electrochemical measurements, XRD and TEM. When the cooling rate was less than 3 × 104 K s−1, filiform corrosion propagated in the early stage of salt immersion test, due to formation of a massive block-shaped LPSO phase during casting. On the other hand, when the cooling rate was increased up to 3 × 104 K s−1, rapidly solidified (RS) alloys exhibited excellent corrosion resistance because of grain refinement and formation of a supersaturated single-phase solid solution. Large-sized Mg97.25Zn0.75Y2 alloys fabricated by consolidation of the RS ribbons also exhibited excellent corrosion resistance with passivity. Enhancement of microstructural and electrochemical homogeneities in the Mg-Zn-Y alloys by rapid solidification techniques results in the passivity of substrate materials.  相似文献   

20.
Fe(III) oxyhydroxides were synthesised in chlorinated environments via chemical or electrochemical processes in order to determine the conditions favouring the formation of akaganéite. Corrosion products were characterised using X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The first method produced Fe(III) oxyhydroxides from the aerial oxidation of iron(II) precipitates which were obtained by mixing FeCl2 · 4H2O and NaOH solutions. Depending on the initial amounts of Fe2+, Cl and OH, goethite, lepidocrocite or akaganéite were then obtained. When a large excess of dissolved FeCl2 was present, akaganéite was formed independently of the oxygen flow. In the second method, steel electrodes were left in baths containing chloride with [Cl] = 2 mol L−1, using either FeCl2 · 4H2O or NaCl. Akaganéite was obtained exclusively in the FeCl2 solutions, confirming that to obtain the formation of this compound, both iron(II) and chloride concentrations must be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号