首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Repassivation behavior of type-312L stainless steel containing 6% of molybdenum was examined in NaCl solution using in situ micro-indentation technique, together with type-304 and 316L stainless steels. High stability of the passive film formed on the type-312L stainless steel was also examined by depth profiling analysis of passive films using glow discharge optical emission spectroscopy (GDOES). In 0.9 mol dm−3 NaCl solution at 296 K the type-304 and 316L stainless steels are passive only up to 0.3 V (SHE), above which pitting corrosion occurs. In contrast, no pitting corrosion occurs on type-312L stainless steel. Despite the significant difference of the pitting corrosion resistance, the repassivation kinetics of the three stainless steels, examined by micro-indentation at 0.3 V (SHE), is similar. The presence of molybdenum in the stainless steel does not influence the repassivation kinetics. The charge required to repassivate the ruptured type-312L stainless steel surface increases approximately linearly with the potential, even though the passivity-maintaining current increased markedly at potentials close to the transpassive region. Repassivation occurs without accompanying significant dissolution of steel, regardless of the stability of passive state. Depth profiling analyses of the passive films on the type-312L stainless steels formed at several potentials revealed that molybdenum species enrich in the outer layer of the passive film, below which chromium-enriched layer is present. The permeation of chloride ions may be impeded by the outer layer containing molybdate, enhancing the resistance against the localized corrosion of the type-312L stainless steel.  相似文献   

2.
The corrosion resistance of 1018 carbon steel, 304 and 316 type stainless steels in the LiBr (55 wt.%) + ethylene glycol + H2O mixture at 25, 50 and 80 °C has been studied using electrochemical techniques which included potentiodynamic polarization curves, electrochemical noise and electrochemical impedance spectroscopy techniques. Results showed that, at all tested temperature, the three steels exhibited an active-passive behavior. Carbon steel showed the highest corrosion rate, since both the passive and corrosion current density values were between two and four orders of magnitude higher than those found for both stainless steels. Similarly, the most active pitting potential values was for 1018 carbon steel. For 1018 carbon steel, the corrosion process was under a mixed diffusion and charge transfer at 25 °C, whereas at 50 and 80 °C a pure diffusion controlled process could be observed. For 316 type stainless steel, at 25 and 50 °C a species adsorption controlled process was observed, whereas at 80 °C a diffusion controlled mechanism was present. Additionally, at 25 °C, the three steels were more susceptible to uniform type of corrosion, whereas at 50 and 80 °C they were very susceptible to localized type of corrosion.  相似文献   

3.
This paper addresses the influence of Cu and Sn addition on the corrosion resistance of AISI 304 and 316 stainless steels in 30 wt% H2SO4 at 25 and 50 °C. The corrosion process was evaluated by gravimetric tests, DC measurements and electrochemical impedance spectroscopy (EIS). The corrosion products were analysed by SEM, X-ray mapping and XPS before and after accelerated tests. The behaviour of both AISI 304 and 316 stainless steels in sulphuric acid solution was greatly improved by increasing Cu concentration and the synergic effect of Cu and Sn. Addition of Sn increased corrosion resistance, but less than addition of copper.  相似文献   

4.
The influence of Cu and Sn on the pitting corrosion resistance of AISI 304 and 316 stainless steels in chloride-containing media has been investigated. The corrosion behaviour was evaluated by cyclic polarization, potentiostatic CPT measurements and electrochemical impedance spectroscopy in 3.5 wt% NaCl. The corrosion resistance was also studied in FeCl3 under Standard ASTM G-48. According to the results, Cu addition favours pit nucleation but inhibits its growth, whereas Sn exerts the opposite effect, favouring pit growth and inhibiting its nucleation. Studies by SEM, X-ray mapping and EDS analysis showed Cu-, Cl- and O-rich corrosion products that reduce the extent of corrosion damage.  相似文献   

5.
The influence of ageing heat treatments (675 and 875 °C for 1.5 to 48 h) on the microstructure and intergranular corrosion resistance of sintered in nitrogen duplex stainless steels was investigated. The materials were obtained by sintering mixtures of austenitic AISI 316L and ferritic AISI 430L powders. Corrosion behaviour was evaluated by using electrochemical techniques. The beneficial effect of nitrogen on corrosion behaviour of solution annealed samples was established. During ageing, secondary phases were precipitated and the intergranular and transgranular corrosion resistance significantly decreased though repassivation was observed in specimens aged at 875 °C for times up to 8 h.  相似文献   

6.
The corrosion behaviour of copper and AISI 304 stainless steel and the galvanic corrosion generated by the copper/AISI 304 pair, have been studied by electrochemical methods. These materials have been tested in an 850 g/L LiBr solution at different temperatures (25-75 °C) and at different Reynolds numbers (1456-5066) in order to study their performance in absorption machines. Results show that copper was always the anodic element of the pair and its corrosion resistance decreases due to the AISI 304 stainless steel galvanic effect. Galvanic corrosion increases with temperature and Reynolds number. However, it was proved that the effect of temperature on galvanic corrosion is more influential than the Reynolds number effect. This fact is also certain for corrosion of uncoupled copper and for corrosion of AISI 304 stainless steel. Experimental values of the corrosion current densities fit well the Arrhenius plot at all the Reynolds numbers analysed and a potential relation between the corrosion current densities and the Reynolds number has been found.  相似文献   

7.
The work addresses the influence of Mn and Mo additions on corrosion resistance of AISI 304 and 316 stainless steels in 30 wt.% H2SO4 at 25 and 50 °C. Corrosion mechanism was determined by gravimetric tests, DC polarization measurements and electrochemical impedance spectroscopy (EIS). The morphology and nature of the reaction products formed on the material surface were analysed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Reduction of temperature from 50 to 25 °C drastically decreased the corrosion rate of AISI 304 and 316 stainless steels in sulphuric acid solution. Mn additions did not affect significantly the general corrosion resistance due to its low ability to form insoluble compounds in acid medium. Meanwhile, the formation of molybdenum insoluble oxides enhanced the corrosion performance.  相似文献   

8.
Duplex stainless steels obtained through powder metallurgy (PM) technology from austenitic AISI 316L and ferritic AISI 430L powders were mixed on different amounts to obtain biphasic structures with austenite/ferrite ratio of 50/50, 65/35 and 85/15. Prepared mixes of powders have been compacted at 750 MPa and sintered in N2-H2 (95% and 5%) at 1250 °C for 1 h. Corrosion behaviour, using electrochemical techniques such as anodic polarization measurement, cyclic anodic polarization scan and electrochemical potentio-kinetic reactivation test and double loop electrochemical potentio-kinetic reactivation double loop test were evaluated. For duplex stainless steels, when austenite/ferrite ratio increases the corrosion potential shifts to more noble potential and passive current density decreases. The beneficial effect of annealing solution heat treatment on corrosion behaviour was established and was compared with corrosion behaviour of vacuum sintered duplex stainless steels. The results were correlated with the microstructural features.  相似文献   

9.
The corrosion resistance and pitting behaviour of Alloy 31, a high-alloyed austenitic stainless steel (UNS N08031), is studied in two heavy brine LiBr solutions (850 g/l) with and without corrosion inhibitor (lithium chromate) at different temperatures (25 °C, 50 °C, 75 °C and 100 °C) using electrochemical techniques. Cyclic potentiodynamic curves indicate that UNS N08031 is less pitting corrosion resistant and it reduces its repassivation properties as temperature increases. Comparison between the results obtained in LiBr solutions with and without inhibitor suggested a decrease in the inhibitor efficiency of lithium chromate at high temperatures.  相似文献   

10.
The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (Epit) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 °C and 520 °C. Under such experimental conditions the Epit-values shifted up to 1.25 V in the positive direction.  相似文献   

11.
Duplex stainless steels can undergo microstructural changes if they are heated improperly. When that happens, duplex stainless steels are sensitized and intermetallic phases appear. The high Chromium and Molybdenum content promotes the formation of secondary phases as a consequence of the heat treatment. These secondary phases, which are rich in alloying elements, such as Cr and Mo, deplete these elements from the neighbouring phases, leading to a reduction in corrosion resistance. In order to study the influence of the secondary phases on the corrosion parameters, samples of duplex stainless steel, Alloy 900 (UNS 1.4462), have been heated in argon atmosphere at 825 °C for 1 h. The corrosion behaviour of sensitized and unsensitized Alloy 900 has been analyzed in a concentrated aqueous lithium bromide (LiBr) solution of 992 g/L by means of cyclic potentiodynamic curves. Secondary phase presence reduces the pitting potential value of Alloy 900. Besides, the pitting potential decreases with temperature. On the other hand, the corrosion potential and open circuit potential values increase with temperature and sensitization.  相似文献   

12.
C.X. Li  T. Bell 《Corrosion Science》2006,48(8):2036-2049
Samples of an AISI 410 martensitic stainless steel were plasma nitrided at a temperature of 420 °C, 460 °C or 500 °C for 20 h. The composition, microstructure and hardness of the nitrided samples were characterised using a variety of analytical techniques. In particular, the corrosion properties of the untreated and plasma nitrided samples were evaluated using anodic polarisation tests in 3.5% NaCl solution and immersion tests in 1% HCl acidic water solution. The results showed that plasma nitriding produced a relatively thick nitrided case consisting of a compound layer and a nitrogen diffusion layer on the 410 stainless steel surface. Plasma nitriding not only increased the surface hardness but also improved the corrosion resistance of the martensitic stainless steel. In the immersion test, nitrided samples showed lower weight loss and lower corrosion rate than untreated one. In the electrochemical corrosion tests, the nitrided samples showed higher corrosion potentials, higher pitting potentials and greatly reduced current densities. The improved corrosion resistance was believed to be related to the iron nitride compound layer formed on the martensitic stainless steel surface during plasma nitriding, which protected the underlying metal from corrosive attack under the testing conditions.  相似文献   

13.
Monophasic and multiphasic (two and three phases) sintered stainless steels were prepared both considering premixes of AISI 316LHC and AISI 434LHC stainless steels powders and using a prealloyed duplex stainless steel 25% Cr, 5% Ni, 2% Mo powder. Their fatigue crack propagation resistance was investigated both in air and under hydrogen charging conditions (0.5 M H2SO4 + 0.01 M KSCN aqueous solution; applied potential = −700 mV/SCE), considering three different stress ratios (R = 0.1; 0.5; 0.75). Fatigue crack propagation micromechanisms were investigated by means of fracture surface scanning electron microscope (SEM) analysis.For all the investigated sintered stainless, fatigue crack propagation resistance is influenced by hydrogen charging and an increase of crack growth rates dependent on the steel microstructure is obtained. Experimental results also allow to identify the sintered stainless steel obtained from the prealloyed 25% Cr, 5% Ni, 2% Mo powder as the most resistant to fatigue crack propagation in air and under hydrogen charging conditions.  相似文献   

14.
The porosity of sintered stainless steels modifies their oxidation behavior, as compared to that of wrought stainless steels. This work studies the oxidation behavior of three sintered stainless steels: one ferritic (AISI 434L) and two austenitic (AISI 316L and 304L). 304L with yttria additions is also been studied to explore the possibility of reducing the oxidation rate of austenitic stainless steels by using this reactive element. The results demonstrate the influence of the formation of NiFe2O4 on the high-temperature behavior of sintered austenitic stainless steels and the effectiveness of yttria additions in increasing the oxidation resistance at 800 °C.  相似文献   

15.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

16.
The corrosion behavior at high-temperature and the aqueous corrosion behavior of sintered stainless steels manufactured from non-commercial prealloyed powder (434L with 2% Si) are studied and their results are compared with those of sintered stainless steels manufactured from commercial 434L powder, that has lower Si content. Both types of powders have been sintered in vacuum at three different temperatures, so materials with different porosity levels have been obtained. Several oxidation tests have been carried out from 700 to 1000 °C. Long-term experiments have proven the better oxidation resistance of 434L + 2% Si steels. Electrochemical measurements of the corrosion rate show a decrease on this parameter caused by the increase of Si-content on powders.  相似文献   

17.
PM 304L and 316L stainless steel have been compacted at 400, 600 and 800 MPa and sintered in vacuum and in nitrogen-hydrogen atmosphere. Postsintered heat treatments (annealing solution and ageing at 375, 675 and 875 °C) have been applied. Pitting corrosion resistance has been studied using anodic polarization measurements and the ferric chloride test. Anodic polarization curves reveal that densities and atmospheres are relevant on anodic behaviour. Pitting resistance is higher for PM 316L and for higher densities and vacuum as sintered atmosphere. Ageing heat treatments at medium and high temperatures are detrimental to passivity although susceptibility to pitting corrosion barely changes. But heat treatments at 375 °C even show certain improvement in pitting corrosion resistance. The results were correlated to the presence of precipitates and mainly to the lamellar constituent which appears in some samples sintered in nitrogen-hydrogen atmosphere. The role of nitrogen on the samples sintered under nitrogen-hydrogen atmosphere and its relation to the microstructural features was described.  相似文献   

18.
Mn and Mo were introduced in AISI 304 and 316 stainless steel composition to modify their pitting corrosion resistance in chloride-containing media. Corrosion behaviour was investigated using gravimetric tests in 6 wt.% FeCl3, as well as potentiodynamic and potentiostatic polarization measurements in 3.5 wt.% NaCl. Additionally, the mechanism of the corrosion attack developed on the material surface was analysed by scanning electron microscopy (SEM), X-ray mapping and energy dispersive X-ray (EDX) analysis. The beneficial effect of Mo additions was assigned to Mo6+ presence within the passive film, rendering it more stable against breakdown caused by attack of aggressive Cl ions, and to the formation of Mo insoluble compounds in the aggressive pit environment facilitating the pit repassivation. Conversely, Mn additions exerted an opposite effect, mainly due to the presence of MnS inclusions which acted as pitting initiators.  相似文献   

19.
Corrosion rates of mild steel, AISI 316 stainless steel and hot-dipped galvanised steel in contact with preservative-treated Pinus radiata have been determined using four distinct accelerated (49 ± 1 °C) and non-accelerated (21 ± 2 °C) weight loss methodologies. The data were measured as a function of timber moisture content and copper concentration over periods of exposure ranging from 2 weeks to 14 months. The results show that the corrosion resistance of the stainless steel was not influenced by classification or magnitude of preservative loading. Corrosion rates of this material were multiple orders of magnitude lower than those of the mild and galvanised steels. In most instances, corrosion rates of hot-dipped galvanised layers in contact with alkaline copper quaternary-treated timbers were up to a factor of 10 times, or greater, than those measured for copper-chrome-arsenate treatments. A direct negative influence of copper ion concentration on the corrosion resistance of mild steel was also observed for each preservative type.  相似文献   

20.
Pitting corrosion of Type 304 stainless steel under drops of MgCl2 solution has been investigated to clarify the rusting mechanism in marine atmospheres. A pitting corrosion test was performed under the droplets with various combinations of the diameter and thickness (height) by exposure to a constant relative humidity. Probability of occurrence of pitting corrosion decreased with decreasing the diameter and thickness. Pitting corrosion progressed only when the [Cl] exceeded 6 M (RH < 65%). In almost cases, there was a small hole (∼10 μm diameter) in the center of a single pit, which may be the trace of an inclusion particle like MnS dissolved out. The pitting corrosion mechanism of Type 304 under droplets containing chloride ions has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号