首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
E.E. Oguzie 《Corrosion Science》2007,49(3):1527-1539
The inhibitive action of leaf extracts of Sansevieria trifasciata on aluminium corrosion in 2 M HCl and 2 M KOH solutions was studied using the gasometric technique. The results indicate that the extract functioned as a good inhibitor in both environments and inhibition efficiency increased with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Temperature studies revealed a decrease in efficiency with rise in temperature and corrosion activation energies increased in the presence of the extract. A mechanism of physical adsorption is proposed for the inhibition behaviour. The adsorption characteristics of the inhibitor were approximated by Freundlich isotherm.  相似文献   

2.
Three ferrocene derivatives, namely 1,1′-diacetylferrocene (Diacetyl Fc), 1,1′-diformylferrocene (Diformyl Fc) and 2-benzimidazolythioacetylferrocene (BIM Fc) were synthesized and their inhibitive effects against mild steel corrosion in aerated 0.5 M H2SO4 and 1 M HCl solutions were evaluated. Corrosion measurements based on polarization resistance (Rp), potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) indicate that Diacetyl Fc, in most cases, accelerates mild steel corrosion in HCl while Diformyl Fc and BIM Fc act as weak inhibitors. In H2SO4 solution, ferrocene derivatives show good inhibition performance. The efficiency of the inhibitors follows the order: BIM Fc > Diformyl Fc ? Diacetyl Fc. Adsorption of both Diacetyl Fc and Diformyl Fc obey Langmuir adsorption isotherm with very low value of free energy of adsorption ΔG° for the Diformyl Fc (physisorption) while adsorption of BIM Fc follows that of Frumkin with high negative value of ΔG° (chemisorption). Both Diformyl Fc and BIM Fc act as mixed-type inhibitors with predominant effect on the anodic dissolution of iron. Analysis of the polarization curves and impedance spectra indicates that charge transfer process mainly controls mild steel corrosion in H2SO4 solution without and with ferrocene compounds. The mechanism of corrosion inhibition or acceleration by ferrocene derivatives was discussed in the light of the molecular structure of the additives.  相似文献   

3.
The corrosion inhibition of mild steel in 0.5 M H2SO4 and 1.0 M HCl by 2-amino-5-phenyl-1,3,4-thiadiazole (APT) has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The results show that the inhibition efficiency increases with the increase of APT concentration in both acids, and the higher inhibition efficiency is obtained in 0.5 M H2SO4. The adsorption of APT molecules on the steel surface obeys Langmuir adsorption isotherm in both acids, and occurs spontaneously. The molecular dynamics method has also been used to simulate the adsorption of ATP molecule and solvent ions on the iron surface. The results show that with the adsorption of sulfate ions the Fe + anion + APT system has the higher negative interaction energy comparing to the case of the adsorption of chloride ions.  相似文献   

4.
The synergistic effect of iodide ions and benzisothiozole-3-piperizine hydrochloride (BITP) on corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been studied by both chemical and electrochemical methods. The corrosion performance of BITP in 1.0 M HCl and 0.5 M H2SO4 media was examined and compared. The adsorption of BITP and its combination with iodide ions on mild steel surface followed Langmuir adsorption isotherm via chemisorption mechanism. The calculated values of synergism parameter (Sθ) were found to be greater than unity. This result clearly showed the existence of synergism between iodide ions and BITP molecules.  相似文献   

5.
The corrosion inhibition of mild steel in 0.5 M H2SO4 and 1 M HCl by hexamethylpararosaniline chloride (HMPC) was investigated using the gravimetric technique in the temperature range 303–333 K. The results indicate that HPMC inhibited the corrosion reaction in both acid media at all temperatures and inhibition efficiency increased with HMPC concentration. The inhibiting action is attributed to general adsorption of protonated and molecular HPMC species on the corroding metal surface. Adsorption followed a modified Langmuir isotherm and the Temkin isotherm, with very high negative values of the free energy of adsorption (). An increase in temperature reduced the inhibition efficiency of HPMC in 0.5 M H2SO4 but increased efficiency in 1 M HCl. Activation parameters such as activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) as well as the adsorption heat (Qads) were evaluated from the effect of temperature on corrosion and inhibition processes.  相似文献   

6.
The cycloaddition reactions of the cyclic nitrones 1-pyrroline 1-oxide and 3,4,5,6-tetrahydropyridine 1-oxide with alkenes, 11-phenoxy-1-undecene and 11-p-methoxyphenoxy-1-undecene, afforded cycloaddition products (bicyclic isoxazolidines) in excellent yields. One of the cycloadducts on reaction with propargyl chloride and ring opening with zinc in acetic acid afforded quaternary ammonium salt and aminoalcohol, respectively. All the new inhibitor molecules in the presence of 400 ppm at 60 °C achieved inhibition efficiencies, determined by gravimetric method, in the range 99-99.6% and 85-99% for mild steel in 1 M HCl and 0.5 M H2SO4, respectively. Comparable results were obtained by the electrochemical methods using Tafel plots and electrochemical impedance spectroscopy for the synthesized compounds. The isoxazolidine derivatives were also found to be good inhibitors of mold steel corrosion in synthetic brine. Negative values of in the acidic media ensured the spontaneity of the adsorption process. While the corrosion inhibition by these molecules was predominantly under cathodic control in 1 M HCl, the inhibition in 0.5 M H2SO4 was found to be under anodic control. The isoxazolidines and their derivatives were found to be among a rare class of molecules, which provide suitable inhibition mechanism for the corrosion inhibition in HCl as well as in H2SO4 media.  相似文献   

7.
The title compound (PyS)2 has been synthesized and its inhibiting action on the corrosion of mild steel in 1-5 M H2SO4 solutions at 35-50 °C has been investigated by polarization resistance (Rp), polarization curves and electrochemical impedance spectroscopy (EIS). (PyS)2 showed excellent performance and its efficiency did not affect either by increasing the acid concentration or rise of temperature. Polarization curves indicated that (PyS)2 behaves mainly as anodic inhibitor in 1 M H2SO4 solutions and as a mixed-type inhibitor in 3 and 5 M H2SO4 solutions at different temperatures. Adsorption of (PyS)2 on the steel surface followed Temkin’s adsorption isotherm with a very high negative value of the free energy of adsorption . The activation parameters of the corrosion process were calculated. EIS showed that the charge transfer controls the corrosion process in the uninhibited and inhibited solutions.  相似文献   

8.
Four quaternary ammonium bromides of different heterocyclic compounds were investigated as corrosion inhibitors of mild steel in 1 M HCl and 1 M H2SO4. Polarisation curves, polarisation resistance and gravimetric methods were used. The inhibitor efficiency was found to depend on both concentration and temperature. The inhibitors were of mixed type, influencing predominantly the anodic process. From the temperature dependences the apparent activation energy in 1 M HCl was determined in the presence of all studied compounds, found to be inferior to the activation energy in absence of inhibitor. The adsorption of the inhibitors was well described by the Frumkin or the Langmuir adsorption isotherms in both acidic media and the adsorption isotherm parameters were determined at room temperature. The influence of the molecular structure was discussed taking into account the different number of positive charges and the different heterocycles. The best inhibitive properties had 1-(carbamoylethyl)-4-methylpyridinium bromide.  相似文献   

9.
2,2′ benzothiazolyl disulfide (BTDS) has been synthesised and their inhibiting action on mild steel corrosion in 1 M HCl and 0.5 M H2SO4 at 308 K has been investigated using weight loss, EIS, polarization and SEM study. BTDS showed better efficiency in 0.5 M H2SO4 compared to 1 M HCl. Polarization studies revealed that BTDS is a mixed type inhibitor in both acids predominantly cathodic in 1 M HCl where as predominantly anodic in 0.5 M H2SO4. Thermodynamic parameters i.e. free energy of adsorption, enthalpy, entropy and activation energy were calculated, the values of these parameters showed good interaction.  相似文献   

10.
Corrosion inhibition and adsorption behaviour for pure iron in 0.5 M H2SO4 by polyacrylamide (PA) were investigated using electrochemical techniques. The effect of iodide ion additives was also studied. It was found that inhibition efficiency increased with PA concentration. Corrosion inhibition was afforded by adsorption of PA onto the metal following El-Awady kinetic-thermodynamic adsorption isotherm model via chemisorption mechanism. A mixed inhibition mechanism is proposed for the inhibitive effects of PA as revealed by potentiodynamic polarization technique. A synergistic effect was observed between PA and KI as evident from the values of synergism parameter found to be greater than unity.  相似文献   

11.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

12.
Galvanic corrosion between the constituent phases in duplex stainless steel   总被引:1,自引:0,他引:1  
The exclusive single-phase with the exact chemical composition of the constituent phase in 2205 duplex stainless steel (DSS) could be prepared using selective dissolution method. The respective electrochemical behavior of each constituent phase could then be measured. The experimental results showed that the two distinct peaks in the active-to-passive transition region of the polarization curve determined in 2 M H2SO4 + 0.5 M HCl mixed solution were actually corresponded to the respective anodic peaks of the single austenite and ferrite phases. A polarity reversion was found between austenite and ferrite phases in mixed H2SO4 + HCl solution and HNO3 solution. Galvanic current measurements also revealed that austenite was anode in HNO3 solution, but became cathode when exposed in 2 M H2SO4 + 0.5 M HCl mixed solution.  相似文献   

13.
Two new bis-isoxazolidines were synthesized in excellent yields via cycloaddition reaction of 1-pyrroline 1-oxide with 2,7-di(10-undecenyloxy)naphthalene and 1,4-di(10-undecenyloxy)benzene. One of the bis-isoxazolidines, on reaction with two equivalents of 1-bromododecane, afforded a bis-quaternary ammonium salt. All three inhibitor molecules in the presence of 400 ppm at 60 °C achieved inhibition efficiencies (IE) in the ranges 97-98% and 92-96% as determined by gravimetric method for corrosion of mild steel in 1 M HCl and 0.5 M H2SO4, respectively. The results obtained by the electrochemical methods using Tafel plots and electrochemical impedance spectroscopy corroborated the findings of the weightloss method. Both bis-isoxazolidines demonstrated remarkable efficiency in the lower range of inhibitor concentrations - in the presence of a meager 1.5 ppm of the inhibitor molecules, IEs of ∼70% in 1 M HCl were achieved. Thermodynamic parameters (, , ) for the adsorption process in the presence of the bis-isoxazolidines were determined. The values of around -90 kJ/mol in 1 M HCl and −50 kJ/mol in 0.5 M H2SO4, pointed towards the chemisorption of the inhibitor molecules, especially in HCl media. While the corrosion inhibition by these molecules was predominantly under cathodic control in 1 M HCl, the inhibition in 0.5 M H2SO4 was found to be under anodic control. The bis-isoxazolidines were found to provide a suitable inhibition mechanism for the corrosion inhibition in HCl as well as in H2SO4 media.  相似文献   

14.
The present article describes the inhibition effect of amino acids cysteine (Cys), methionine (Met) and alanine (Ala), towards the corrosion of lead-alloy (Pb-Ca-Sn) in H2SO4 solution by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement and scanning electron microscopy (SEM) methods. The influence of inhibitor concentration, temperature and time on inhibitory behavior of the amino acids was investigated. The corrosion data including corrosion current density (Icorr), corrosion potential (Ecorr) and charge transfer resistance (Rct) were determined from Tafel plots and EIS. Recording impedance spectra showed that the charge transfer resistance is increased by increasing adsorption time. The SEM micrographs revealed that the corroded surface area is decreased in the presence of amino acids. Meanwhile, the inhibition efficiency (IE) was found to be depending on the type of amino acid and its concentration. The IE for 0.1 M Cys in 0.5 M H2SO4 is greater than 96%. Adsorption isotherms were fitted by Langmuir isotherm.  相似文献   

15.
In this work, the dodecyl cysteine hydrochloride surfactant was synthesized. The surface properties of this surfactant were studied using surface tension technique. The nanostructure of this surfactant with the prepared gold nanoparticles was investigated using TEM technique. The synthesized surfactant and its nanostructure with the prepared gold nanoparticles were examined as non-toxic corrosion inhibitors for carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that the percentage inhibition efficiency (η%) for each inhibitor increases with increasing concentration until critical micelle concentration (CMC) is reached. The maximum inhibition efficiency approached 76.6% in the presence of 175 ppm of dodecyl cysteine and 90.8% in the presence of the same concentration of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles. Polarization data indicate that the selected additives act as mixed type inhibitors. The slopes of the cathodic and anodic Tafel lines (βc and βa) are approximately constant and independent of the inhibitor concentration. Analysis of the impedance spectra indicates that the charge transfer process mainly controls the corrosion process of carbon steel in 2 M HCl solution both in the absence and presence of the inhibitors. Adsorption of these inhibitors on carbon steel surface is found to obey the Langmuir adsorption isotherm. From the adsorption isotherms the values of adsorption equilibrium constants (Kads) were calculated. The relatively high value of (Kads) in case of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles reveals a strong interaction between the inhibitor molecules and the metal surface.  相似文献   

16.
The corrosion inhibition of mild steel in a 2.5 M H2SO4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H2SO4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.  相似文献   

17.
The inhibition effect of 6-benzylaminopurine (BAP) on the corrosion of cold rolled steel (CRS) in 1.0-7.0 M H2SO4 at 25-50 °C was studied by weight loss and potentiodynamic polarization methods. Fourier transform infrared spectroscopy (FTIR) and atomic force microscope (AFM) were used to characterize the CRS surface. The results showed that BAP was a good inhibitor in 1.0 M H2SO4, and the adsorption of BAP obeyed the Temkin adsorption isotherm. Polarization curves showed that BAP acted as a mixed-type inhibitor in sulfuric acid. Depending on the results, the inhibitive mechanism was proposed.  相似文献   

18.
Chemical methods were used to assess the inhibitive and adsorption behaviour of carboxymethyl cellulose (CMC) for mild steel in H2SO4 solution at 30-60 °C. Results obtained show that CMC act as inhibitor for mild steel in H2SO4. The inhibition efficiency was found to increase with increase in CMC concentration but decreased with rise in temperature, which is suggestive of physical adsorption mechanism. The adsorption of the CMC onto the mild steel surface was found to follow Langmuir and Dubinin-Radushkevich adsorption isotherm models. The inhibition mechanism was further corroborated by the values of activation parameters obtained from the experimental data.  相似文献   

19.
The synergism between red tetrazolium (RT) and uracil (Ur) on the corrosion of cold rolled steel (CRS) in H2SO4 solution is first investigated by weight loss, potentiodynamic polarization, and atomic force microscope (AFM). Effects of inhibitor concentration (25-500 mg l−1), temperature (20-50 °C), and acid concentration (1.0-5.0 M) on synergism are discussed systematically. The results reveal that RT has a moderate inhibitive effect, and its adsorption obeys the Freundlich adsorption isotherm. For Ur, it has a poor effect. However, incorporation of RT with Ur significantly improves the inhibition performance, and produces synergistic inhibition effect.  相似文献   

20.
The corrosion inhibition of iron in HCl, HClO4, H2SO4 and H3PO4 solutions (1M for each) by cefatrexyl has been studied by polarization resistance (Rp) and electrochemical impedance spectroscopy (EIS) at the corrosion potential. The results obtained at 30 °C revealed that cefatrexyl acts as a weak inhibitor in HCl solution while it shows excellent inhibition performance in the remaining acids. Adsorption of cefatrexyl in HCl solution obeys Langmuir’s isotherm with a very low value of the free energy of adsorption (physisorption) while its adsorption in the other acids follows Temkin’s isotherm with very high negative values of (chemisorption). Data obtained from EIS measurements were analyzed to model the corrosion inhibition process through appropriate equivalent circuit models. The calculated values of the apparent activation energy (Ea) and the pre-exponential factor (λ) indicate that cefatrexyl blocks nearly the whole active centers of iron surface in H3PO4 solution even at elevated temperatures. The inhibition mechanism of cefatrexyl was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号