首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a computer package designed to generate and test norm-conserving pseudo-potentials within Density Functional Theory. The generated pseudo-potentials can be either non-relativistic, scalar relativistic or fully relativistic and can explicitly include semi-core states. A wide range of exchange-correlation functionals is included.

Program summary

Program title: Atomic Pseudo-potentials Engine (APE)Catalogue identifier: AEAC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAC_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 88 287No. of bytes in distributed program, including test data, etc.: 649 959Distribution format: tar.gzProgramming language: Fortran 90, CComputer: any computer architecture, running any flavor of UNIXOperating system: GNU/LinuxRAM: <5 MbClassification: 7.3External routines: GSL (http://www.gnu.org/software/gsl/)Nature of problem: Determination of atomic eigenvalues and wave-functions using relativistic and nonrelativistic Density-Functional Theory. Construction of pseudo-potentials for use in ab-initio simulations.Solution method: Grid-based integration of the Kohn-Sham equations.Restrictions: Relativistic spin-polarized calculations are not possible. The set of exchange-correlation functionals implemented in the code does not include orbital-dependent functionals.Unusual features: The program creates pseudo-potential files suitable for the most widely used ab-initio packages and, besides the standard non-relativistic Hamann and Troullier-Martins potentials, it can generate pseudo-potentials using the relativistic and semi-core extensions to the Troullier-Martins scheme. APE also has a very sophisticated and user-friendly input system.Running time: The example given in this paper (Si) takes 10 s to run on a Pentium IV machine clocked at 2 GHz.  相似文献   

2.
Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post-DFT calculation approach, i.e. by applying the functional to the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N2 where N is the number of points in which the density is defined, and a massively parallel calculation is welcome for a wider applicability of the new approach. In this article we present a code which accomplishes this goal.

Program summary

Program title: JuNoLoCatalogue identifier: AEFM_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFM_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 176 980No. of bytes in distributed program, including test data, etc.: 2 126 072Distribution format: tar.gzProgramming language: Fortran 90Computer: any architecture with a Fortran 90 compilerOperating system: Linux, AIXHas the code been vectorised or parallelized?: Yes, from 1 to 65536 processors may be used.RAM: depends strongly on the problem's size.Classification: 7.3External routines:• FFTW (http://www.tw.org/)• MPI (http://www.mcs.anl.gov/research/projects/mpich2/ or http://www.lam-mpi.org/)Nature of problem: Obtaining the value of the nonlocal vdW-DF energy based on the charge density distribution obtained from some Density Functional Theory code.Solution method: Numerical calculation of the double sum is implemented in a parallel F90 code. Calculation of this sum yields the required nonlocal vdW-DF energy.Unusual features: Binds to virtually any DFT program.Additional comments: Excellent parallelization features.Running time: Depends strongly on the size of the problem and the number of CPUs used.  相似文献   

3.
A computer package (CNMS) is presented aimed at the solution of finite-level quantum optimal control problems. This package is based on a recently developed computational strategy known as monotonic schemes.Quantum optimal control problems arise in particular in quantum optics where the optimization of a control representing laser pulses is required. The purpose of the external control field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources, are accommodated through appropriately chosen cost functionals.

Program summary

Program title: CNMSCatalogue identifier: ADEB_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 770No. of bytes in distributed program, including test data, etc.: 7098Distribution format: tar.gzProgramming language: MATLAB 6Computer: AMD Athlon 64 × 2 Dual, 2:21 GHz, 1:5 GB RAMOperating system: Microsoft Windows XPWord size: 32Classification: 4.9Nature of problem: Quantum controlSolution method: IterativeRunning time: 60-600 sec  相似文献   

4.
Fireball is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access Fireball's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation.

Program summary

Program title: FireballUICatalogue identifier: AECF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 279 784No. of bytes in distributed program, including test data, etc.: 12 836 145Distribution format: tar.gzProgramming language: JavaComputer: PC and workstationOperating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package.RAM: 512 MBWord size: 32 or 64 bitsClassification: 4.14Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations.Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are going to run a simulation on, the user can set up and start the computations of up to hundreds of simulations.Running time: 3 to 5 minutes on a 2 GHz Pentium IV processor.  相似文献   

5.
An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk.

Program summary

Program title: TransmittanceCatalogue identifier: AEBQ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5778No. of bytes in distributed program, including test data, etc.: 90 474Distribution format: tar.gzProgramming language: JavaComputer: Developed on PC-Pentium platformOperating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OSRAM: VariableClassification: 18Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter.Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool.Running time: Real-time simulations  相似文献   

6.
Computer generated holograms are usually generated using commercial software like MATLAB, MATHCAD, Mathematica, etc. This work is an approach in doing the same using freely distributed open source packages and Operating System. A Fourier hologram is generated using this method and tested for simulated and optical reconstruction. The reconstructed images are in good agreement with the objects chosen. The significance of using such a system is also discussed.

Program summary

Program title: FHOLOCatalogue identifier: AEDS_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDS_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 176 336No. of bytes in distributed program, including test data, etc.: 4 294 872Distribution format: tar.gzProgramming language: C++Computer: any X86 micro computerOperating system: Linux (Debian Etch)RAM: 512 MBClassification: 18Nature of problem: To generate a Fourier Hologram in micro computer only by using open source operating system and packages.Running time: Depends on the matrix size. 10 sec for a matrix of size 256×256.  相似文献   

7.
A computational approach is presented for efficient solution of two-dimensional few-body problems, such as quantum dots or excitonic complexes, using the stochastic variational method. The computer program can be used to calculate the energies and wave functions of various two-dimensional systems.

Program summary

Program title: svm-2dCatalogue identifier: AEBE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5091No. of bytes in distributed program, including test data, etc.: 130 963Distribution format: tar.gzProgramming language: Fortran 90Computer: The program should work on any system with a Fortran 90 compilerOperating system: The program should work on any system with a Fortran 90 compilerClassification: 7.3Nature of problem: Variational calculation of energies and wave functions using Correlated Gaussian basis.Solution method: Two-dimensional few-electron problems are solved by the variational method. The ground state wave function is expanded into Correlated Gaussian basis functions and the parameters of the basis states are optimized by a stochastic selection procedure. Accurate results can be obtained for 2-6 electron systems.Running time: A couple of hours for a typical system.  相似文献   

8.
We present a driver program for performing replica-exchange molecular dynamics simulations with the Tinker package. Parallelization is based on the Message Passing Interface, with every replica assigned to a separate process. The algorithm is not communication intensive, which makes the program suitable for running even on loosely coupled cluster systems. Particular attention is paid to the practical aspects of analyzing the program output.

Program summary

Program title: TiReXCatalogue identifier: AEEK_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEK_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 43 385No. of bytes in distributed program, including test data, etc.: 502 262Distribution format: tar.gzProgramming language: Fortran 90/95Computer: Most UNIX machinesOperating system: LinuxHas the code been vectorized or parallelized?: parallelized with MPIClassification: 16.13External routines: TINKER version 4.2 or 5.0, built as a libraryNature of problem: Replica-exchange molecular dynamics.Solution method: Each replica is assigned to a separate process; temperatures are swapped between replicas at regular time intervals.Running time: The sample run may take up to a few minutes.  相似文献   

9.
The success of large scale relativistic multiconfiguration Dirac-Hartree-Fock calculations for atomic systems rely on judiciously chosen configuration expansions. Dependent on the atomic system as well as on the studied properties, various correlation effects need to be considered. Based on the active set approach, this program allows the user to generate general lists of jj-coupled configuration state functions to be used as input to the grasp2K multiconfiguration Dirac-Hartree-Fock package [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. (2007), in press].

Program summary

Program title: JJGENCatalogue identifier: ADZG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 10 673No. of bytes in distributed program, including test data, etc.: 430 543Distribution format: tar.gzProgramming language: FortranComputer: Intel compatible PCOperating system: Linux, UnixWord size: 32 bitsClassification: 7.3Nature of problem: Generation of lists of jj-coupled configuration state functions to describe different electron correlation effects in many-electron atoms.Solution method: From a set of reference configurations a list of jj-coupled configuration state functions is generated by excitations to an active set of orbitals. Imposing restrictions on the allowed excitations the configuration expansion can be targeted to describe different correlation effects.Restrictions: The complexity of the cases that can be handled is entirely determined by the grasp2K package [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. (2007), in press] used for the generation of the electronic wave-functions.Running time: CPU time required to execute test cases: few seconds.  相似文献   

10.
The Motion4D-library solves the geodesic equation as well as the parallel- and Fermi-Walker-transport in four-dimensional Lorentzian spacetimes numerically. Initial conditions are given with respect to natural local tetrads which are adapted to the symmetries or the coordinates of the spacetime. Beside some already implemented metrics like the Schwarzschild and Kerr metric, the object oriented structure of the library permits to implement other metrics or integrators in a straight forward manner.

Program summary

Program title: Motion4D-libraryCatalogue identifier: AEEX_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 150 425No. of bytes in distributed program, including test data, etc.: 5 139 407Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, Unix, WindowsRAM: 39 MBytesClassification: 1.5External routines: Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/)Nature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes.Solution method: Integration of ordinary differential equationsRunning time: The test runs provided with the distribution require only a few seconds to run.  相似文献   

11.
When one deals with data drawn from continuous variables, a histogram is often inadequate to display their probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that, the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step function, so that its differentiation does not give a smooth probability density. Based on Fourier series expansion and Kolmogorov tests, we introduce a simple method, which overcomes this problem. Error bars on the estimated probability density are calculated using a jackknife method. We give several examples and provide computer code reproducing them. You may want to look at the corresponding figures 4 to 9 first.

Program summary

Program title: cdf_to_pdCatalogue identifier: AEBC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBC_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2758No. of bytes in distributed program, including test data, etc.: 18 594Distribution format: tar.gzProgramming language: Fortran 77Computer: Any capable of compiling and executing Fortran codeOperating system: Any capable of compiling and executing Fortran codeClassification: 4.14, 9Nature of problem: When one deals with data drawn from continuous variables, a histogram is often inadequate to display the probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that, the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step function, so that its differentiation does not give a smooth probability density.Solution method: Based on Fourier series expansion and Kolmogorov tests, we introduce a simple method, which overcomes this problem. Error bars on the estimated probability density are calculated using a jackknife method. Several examples are included in the distribution file.Running time: The test runs provided take only a few seconds to execute.  相似文献   

12.
We present an algorithm for the derivation of Dyson-Schwinger equations of general theories that is suitable for an implementation within a symbolic programming language. Moreover, we introduce the Mathematica package DoDSE1 which provides such an implementation. It derives the Dyson-Schwinger equations graphically once the interactions of the theory are specified. A few examples for the application of both the algorithm and the DoDSE package are provided.

Program summary

Program title: DoDSECatalogue identifier: AECT_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECT_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 105 874No. of bytes in distributed program, including test data, etc.: 262 446Distribution format: tar.gzProgramming language: Mathematica 6 and higherComputer: all on which Mathematica is availableOperating system: all on which Mathematica is availableClassification: 11.1, 11.4, 11.5, 11.6Nature of problem: Derivation of Dyson-Schwinger equations for a theory with given interactions.Solution method: Implementation of an algorithm for the derivation of Dyson-Schwinger equations.Unusual features: The results can be plotted as Feynman diagrams in Mathematica.Running time: Less than a second to minutes for Dyson-Schwinger equations of higher vertex functions.  相似文献   

13.
A program package, which facilitates computations in the framework of Analytic approach to QCD, is developed and described in detail. The package includes both the calculated explicit expressions for relevant spectral functions up to the four-loop level and the subroutines for necessary integrals.

Program summary

Program title: QCDMAPTCatalogue identifier: AEGP_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGP_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2579No. of bytes in distributed program, including test data, etc.: 180 052Distribution format: tar.gzProgramming language: Maple 9 and higherComputer: Any which supports Maple 9Operating system: Any which supports Maple 9Classification: 11.1, 11.5, 11.6Nature of problem: Subroutines helping computations within Analytic approach to QCD.Solution method: A program package for Maple is provided. It includes both the explicit expressions for relevant spectral functions and the subroutines for basic integrals used in the framework of Analytic approach to QCD.Running time: Template program running time is about a minute (depends on CPU).  相似文献   

14.
We present the first of a two-part Mathematica notebook collection that implements a symbolic approach for the application of the density matrix expansion (DME) to the Hartree-Fock (HF) energy from a chiral effective field theory (EFT) three-nucleon interaction at N2LO. The final output from the notebooks is a Skyrme-like energy density functional that provides a quasi-local approximation to the non-local HF energy. In this paper, we discuss the derivation of the HF energy and its simplification in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix. Furthermore, a set of steps is described and illustrated on how to extend the approach to other three-nucleon interactions.

Program summary

Program title: SymbHFNNNCatalogue identifier: AEGC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGC_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 96 666No. of bytes in distributed program, including test data, etc.: 378 083Distribution format: tar.gzProgramming language: Mathematica 7.1Computer: Any computer running Mathematica 6.0 and later versionsOperating system: Windows Xp, Linux/UnixRAM: 256 MbClassification: 5, 17.16, 17.22Nature of problem: The calculation of the HF energy from the chiral EFT three-nucleon interaction at N2LO involves tremendous spin-isospin algebra. The problem is compounded by the need to eventually obtain a quasi-local approximation to the HF energy, which requires the HF energy to be expressed in terms of scalar/vector-isoscalar/isovector parts of the one-body density matrix. The Mathematica notebooks discussed in this paper solve the latter issue.Solution method: The HF energy from the chiral EFT three-nucleon interaction at N2LO is cast into a form suitable for an automatic simplification of the spin-isospin traces. Several Mathematica functions and symbolic manipulation techniques are used to obtain the result in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix.Running time: Several hours  相似文献   

15.
We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor.

Program summary

Program title:AdiabaticRotorCatalogue identifier:ADZO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:479No. of bytes in distributed program, including test data, etc.:4853Distribution format:tar.gzProgramming language:Fortran 90Computer:Pentium-IV, Macintosh Power PC G4Operating system:Linux, Mac OS XRAM:600 KbytesWord size:64 bitsClassification:2.3Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field.Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method.Running time:3 min on a 3 GHz Pentium IV processor.  相似文献   

16.
We describe a revised and updated version of the program package SMMP. SMMP is an open-source FORTRAN package for molecular simulation of proteins within the standard geometry model. It is designed as a simple and inexpensive tool for researchers and students to become familiar with protein simulation techniques. SMMP 3.0 sports a revised API increasing its flexibility, an implementation of the Lund force field, multi-molecule simulations, a parallel implementation of the energy function, Python bindings, and more.

Program summary

Title of program:SMMPCatalogue identifier:ADOJ_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADOJ_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlProgramming language used:FORTRAN, PythonNo. of lines in distributed program, including test data, etc.:52 105No. of bytes in distributed program, including test data, etc.:599 150Distribution format:tar.gzComputer:Platform independentOperating system:OS independentRAM:2 MbytesClassification:3Does the new version supersede the previous version?:YesNature of problem:Molecular mechanics computations and Monte Carlo simulation of proteins.Solution method:Utilizes ECEPP2/3, FLEX, and Lund potentials. Includes Monte Carlo simulation algorithms for canonical, as well as for generalized ensembles.Reasons for new version:API changes and increased functionality.Summary of revisions:Added Lund potential; parameters used in subroutines are now passed as arguments; multi-molecule simulations; parallelized energy calculation for ECEPP; Python bindings.Restrictions:The consumed CPU time increases with the size of protein molecule.Running time:Depends on the size of the simulated molecule.  相似文献   

17.
This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from “noise”, we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not.

Program summary

Program title: Fractal Analysis v01Catalogue identifier: AEEG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 29 690No. of bytes in distributed program, including test data, etc.: 4 967 319Distribution format: tar.gzProgramming language: MS Visual Basic 6.0Computer: PCOperating system: MS Windows 98 or laterRAM: 30MClassification: 14Nature of problem: Estimating the fractal dimension of images.Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from “noise”. User friendly graphical interface.Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format.Running time: In a first approximation, the algorithm is linear.  相似文献   

18.
We present a C-code designed to obtain the nucleus-nucleus potential by using the double folding model (DFM) and in particular to find the Coulomb barrier. The program calculates the nucleus-nucleus potential as a function of the distance between the centers of mass of colliding nuclei. The most important output parameters are the Coulomb barrier energy and the radius. Since many researchers use a Woods-Saxon profile for the nuclear term of the potential we provide an option in our code for fitting the DFM potential by such a profile.

Program summary

Program title: DFMSPHCatalogue identifier: AEFH_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFH_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5929No. of bytes in distributed program, including test data, etc.: 115 740Distribution format: tar.gzProgramming language: CComputer: PCOperating system: Windows XP (with the GCC-compiler version 2)RAM: Below 10 MbyteClassification: 17.9Nature of problem: The code calculates in a semimicroscopic way the bare interaction potential between two colliding spherical nuclei as a function of the center of mass distance. The height and the position of the Coulomb barrier are found. The calculated potential is approximated by a conventional Woods-Saxon profile near the barrier. Dependence of the barrier parameters upon the characteristics of the effective NN forces (like, e.g. the range of the exchange part of the nuclear term) can be investigated.Solution method: The nucleus-nucleus potential is calculated using the double folding model with the Coulomb and the effective M3Y NN interactions. For the direct parts of the Coulomb and the nuclear terms, the Fourier transform method is used. In order to calculate the exchange parts the density matrix expansion method is applied.Running time: Less than 1 minute using a PC with a 1.60 GHz processor.  相似文献   

19.
In this paper we describe the extension of the Mathematica package HPL to treat harmonic polylogarithms of complex arguments. The harmonic polylogarithms have been introduced by Remiddi and Vermaseren [E. Remiddi, J.A.M. Vermaseren, Int. J. Modern Phys. A 15 (2000) 725, hep-ph/9905237] and have many applications in high energy particle physics.New version program summaryProgram title: HPLCatalogue identifier: ADWX_v2_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADWX_v2_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 13 610No. of bytes in distributed program, including test data, etc.: 1 055 706Distribution format: tar.gzProgramming language: Mathematica 7/8.Computer: All computers running Mathematica.Operating system: Operating systems running Mathematica.Supplementary material: Additional “high weight” MinimalSet files available.Classification: 4.7.Catalogue identifier of previous version: ADWX_v1_0Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 222Does the new version supersede the previous version?: YesNature of problem: Computer algebraic treatment of the harmonic polylogarithms which appear in the evaluation of Feynman diagrams.Solution method: Mathematica implementation.Reasons for new version: Added treatment of complex arguments. Details in arXiv:hep-ph/0703052.Summary of revisions: Added treatment of complex arguments. Details in arXiv:hep-ph/0703052.Running time: A few seconds for each function.  相似文献   

20.
We document our Fortran 77 code for multicanonical simulations of 4D U(1) lattice gauge theory in the neighborhood of its phase transition. This includes programs and routines for canonical simulations using biased Metropolis heatbath updating and overrelaxation, determination of multicanonical weights via a Wang-Landau recursion, and multicanonical simulations with fixed weights supplemented by overrelaxation sweeps. Measurements are performed for the action, Polyakov loops and some of their structure factors. Many features of the code transcend the particular application and are expected to be useful for other lattice gauge theory models as well as for systems in statistical physics.

Program summary

Program title: STMC_U1MUCACatalogue identifier: AEET_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEET_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 18 376No. of bytes in distributed program, including test data, etc.: 205 183Distribution format: tar.gzProgramming language: Fortran 77Computer: Any capable of compiling and executing Fortran codeOperating system: Any capable of compiling and executing Fortran codeClassification: 11.5Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors.Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars.Running time: The prepared tests runs took up to 74 minutes to execute on a 2 GHz PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号