首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of temperature and chloride ion concentration on the corrosion behaviour of Mg?4Al?3Ca?0.5RE alloys were studied in this paper. Corrosion rates of the alloys were measured by weight loss test and electrochemical measurement. The results revealed that a shorter incubation period to the onset of corrosion, a more negative corrosion potential, and a higher corrosion rate was correlated with a higher temperature in 3% NaCl solution and a higher chloride ion concentration at 30°C. The corrosion behaviour of the alloys was affected by surface film and the corrosion mainly occurred at the breaks or defects in surface films.  相似文献   

2.
Abstract

The corrosion protective behaviour of bis-[triethoxysilylpropyl]tetrasulphide (BTESPT) silane film formed by partly hydrolysed BTESPT on AZ31 Mg alloy was investigated. Fourier transform infrared spectroscopy (FTIR) was used for structural characterisation of the silane film. Scanning electron microscope (SEM) and energy dispersive X-ray (EDS) analysis were used for observation of surface morphology and elements analysis of the film. The corrosion behaviours of bare and the silane treated AZ31 Mg alloy in 3·5 wt-%NaCl solution were studied using electrochemical polarisation test, electrochemical impedance spectroscopy (EIS) and immersion test. The results demonstrate that bare AZ31 Mg alloy endures severe corrosion even in NaCl water solution at pH 12, although the corrosion is lighter than that in neutral and acidic NaCl water solution, and that the BTESPT silane film can improve the corrosion protection performances of AZ31 Mg alloy and a lower corrosion rate correlated with higher pH.  相似文献   

3.
The corrosion and passivation behaviour of molybdenum thin films obtained by Physical Vapor Deposition (PVD) was investigated in aerated chloride and sulfate solutions at different pH values. Open circuit potential (ocp) measurements, polarisation experiments and electrochemical impedance spectroscopy (EIS) were employed. The experimental results suggest that the metal surface is covered by a passive film; however, corrosion still occurs. For the samples assessed during the current research, the acidic electrolytes tended to be less corrosive; however, a limited passive region was associated with the most basic sulfate or chloride solution. The effect of the pH was found to be more pronounced than the effect of the ion (chloride or sulfate).  相似文献   

4.
Abstract

The low corrosion resistance of magnesium limited its application in industrial affairs. The main corrosive anions for magnesium are sulphate and chloride. This paper deals with their effect at low concentrations on the corrosion behaviour of Mg and Mg based alloy (AS31 and AZ91) in presence/absence of buffer solutions (pH 8). The electrochemical measurements used are open circuit potential and potentiodynamic polarisation. The results exposed that in the absence of a protective layer, general corrosion is observed to occur at greater rate than when sulphate is present; however, the general corrosion is transformed to localised corrosion faster in presence of chloride. In the presence of a protective layer, the localised corrosion is perceived in the case of chloride more than sulphate. The presence of aluminium in the alloys has two contradictory actions. One increases the passivity of the formed layer and the other increases the localised corrosion. The percentage of aluminium in the alloy controls these actions.  相似文献   

5.
通过慢拉伸应力腐蚀试验机、电化学工作站和扫描电子显微镜(SEM)等手段,研究挤压态镁合金AZ31B在pH=2、7和12的NaCl溶液中的应力腐蚀行为。结果表明,随pH值增大,AZ31B静态腐蚀速率和应力腐蚀敏感性均降低,这是由于碱性溶液更有利于Mg(OH)2表面保护膜的形成。应力腐蚀试验中点蚀形成主要裂纹源,拉伸断口分析表明应力腐蚀具有多裂纹源特征,应力加速腐蚀进程,断裂方式属于穿晶解理断裂。  相似文献   

6.
In this study, the corrosion behaviour of stainless steel fibre-reinforced copper metal matrix composite was investigated in chloride media at different temperatures and pH values using electrochemical techniques. The results were demonstrated in terms of the electrochemical response of the composite constituents. Microstructure observations of free corroded samples showed that the corrosion initiated at the copper matrix. Galvanic current density measurements demonstrated equilibrium polarity in which copper acted as the cell anode. The corrosion behaviour of the composite was predominantly determined by copper.  相似文献   

7.
钢筋在混凝土模拟孔隙液中腐蚀电化学行为   总被引:10,自引:2,他引:10  
采用动电位极化曲线法研究了钢筋在混凝土模拟孔隙液中腐蚀电化学行为.结果表明:随着Cl-离子浓度升高,PH值下降,腐蚀电流(Icorr)增大,破裂电位(En)降低:致使钢筋表面钝化膜破裂的临界Cl-离子浓度与孔隙液的pH值之间存在对数关系.提出了Cl-和OH-在钝化膜局部区域上的竞争吸附模型,并解释了实验结果.  相似文献   

8.
Recently, superior corrosion properties of zinc coatings alloyed with magnesium have been reported. Corrosion behaviour of model zinc-magnesium alloys was studied to understand better the protective mechanism of magnesium in zinc. Alloys containing from 1 to 32 wt.% magnesium, pure zinc, and pure magnesium were contaminated with sodium chloride and exposed to humid air for 28 days. Composition of corrosion products was analyzed using infrared spectroscopy (FTIR), ion chromatography (IC), and Auger electron spectroscopy (AES). The exposure tests were completed with scanning Kelvin probe (SKP) and electrochemical measurements. Weight loss of ZnMg alloys with 1-16 wt.% magnesium was lower than that of pure zinc. Up to 10-fold drop in weight loss was found for materials with 4-8 wt.% Mg in the structure. The improved corrosion stability of ZnMg alloys was connected to the presence of an Mg-based film adjacent to the metal surface. It ensured stable passivity in chloride environment and limited the efficiency of oxygen reduction.  相似文献   

9.
采用开路电位(OCP)、动电位极化曲线(PPC)、电化学阻抗谱(EIS) 3种电化学测试手段对工业纯钛(CP-Ti)在含氟离子硝酸溶液中的电化学腐蚀行为进行研究。结果表明:随着硝酸溶液中氟离子浓度的增加,CP-Ti耐蚀性变差;影响CP-Ti耐蚀性转变的临界氟离子浓度为1. 25 mmol/L;氟离子与CP-Ti表面的氧化膜发生反应,致使均匀、致密的氧化膜溶解转变为多孔膜,降低了CP-Ti的耐蚀性。  相似文献   

10.
The influences of surface films formed by open-circuit exposure to neutral solutions on the corrosion and electrochemical behaviour of pure Mg and Mg alloys have been examined by in situ ellipsometric analysis and electrochemical measurements. Surface films mainly composed of Mg(OH)2 grew rapidly during open-circuit exposure to 0.1 M NaCl and 0.1 M Na2SO4 solutions. These films had protective ability to passivate Mg in the solutions. However, they suffered local breakdown under anodic polarisation. The passive current density decreased and the breakdown potential increased with increasing immersion time and film thickness. Influences of purity and alloying elements on the passivity and its breakdown of Mg have been discussed.  相似文献   

11.
This paper investigates the inhibiting properties of dithiooxamide (DTOA) towards copper corrosion in chloride media at different pH values. The aggressive solutions were prepared by dissolving 0.1 M sodium chloride in a Britton Robinson buffer, adjusted at the pH values of 3, 5, 7 and 9. The inhibitor was tested at the concentration of 10?3 M. The inhibiting efficiency of DTOA was evaluated after 20 days of immersion in the solutions at the temperature of 30°C. Both dc (polarization curves and voltammetric tests) and ac (electrochemical impedance spectroscopy, EIS) electrochemical tests were performed to elucidate the inhibition process. The results indicate that DTOA affords its best inhibiting efficiency at pH 5 and 7, but even at pH 3 it can retard the corrosion process. On the contrary, at pH 9 it stimulates the corrosion process. Between pH 3 and 7, the additive is reputed to form a protective film of Cu(II)DTOA salt, which is formed through a two step oxidative process, probably involving Cu(I)DTOA as an intermediate. The EIS analysis indicates that in chloride solutions copper fits a model of a partially blocked electrode. This analysis suggests that at pH 3 and 7 the film produced on copper by DTOA has a lower porosity than that of the oxide or cuprous chloride films formed in non inhibited solutions, thus hindering the mass transport through the layer.  相似文献   

12.
Spontaneous electrochemical noise (EN) can be a rich source of information concerning the processes simultaneously occurring at a corroding interface. Potential noise fluctuations during the free corrosion of pure aluminum in different concentration of neutral sodium chloride solution are investigated, and the breakdown and restoration of passive metal's film are studied using potentiodynamic scanning (PDS) measurements and electrochemical impedance spectroscopy (EIS) technique. Two capacitance loops are observed in the Nyquist plots in two kinds of concentration, and the corrosion process is under activation control at first, then become diffusion control within the oxide film and corrosion products of (Al(OH)p-mCl-m) accumulated on the surface of the corroding electrode. It is suggested that the pitting corrosion is much easier to occur for pure aluminum in 7.0wt% than in 2.0wt% NaCl solution, and the high concentration of chloride ion in solution inhibits the repassivation of a metastable pit. The co  相似文献   

13.
This study studied corrosion in 0.1 M Na2SO4, 0.1 M NaCl, and 0.6 M NaCl, all saturated with Mg(OH)2, using weight loss, hydrogen evolution, and electrochemical measurements. Corrosion was similar in all cases. Nevertheless, the corrosion rates were alloy-dependent, were somewhat lower in 0.1 M Na2SO4 than in 0.1 M NaCl, and increased with NaCl concentration. The corrosion damage morphology was similar for all solutions; the extent correlated with the corrosion rate. The corrosion rates evaluated by the electrochemical methods were lower than those evaluated from hydrogen evolution, consistent with the Mg corrosion mechanism involving the unipositive Mg+ ion.  相似文献   

14.
Magnesium (Mg) alloys as well as experimental alloys are emerging as light structural materials for current, new, and innovative applications. This paper describes the influence of the alloying elements and the different casting processes on the microstructure and performance of these alloys and corrosion. It gives a comprehensible approach for the resistance of these alloys to general, localized and metallurgically influenced corrosion, which are the main challenges for their use. Exposure to humid air with ∼65% relative humidity during 4 days gives 100–150 nm thickness. The film is amorphous and has an oxidation rate less than 0.01 μm/y. The pH values between 8.5 and 11.5 correspond to a relatively protective oxide or hydroxide film; however above 11.5 a passive stable layer is observed. The poor corrosion resistance of many Mg alloys can be due to the internal galvanic corrosion caused by second phases or impurities. Agitation or any other means of destroying or preventing the formation of a protective film leads to increasing corrosion kinetics. The pH changes during pitting corrosion can come from two different reduction reactions: reduction of dissolved oxygen (O) and that of hydrogen (H) ions. Filiform corrosion was observed in the uncoated AZ31, while general corrosion mainly occurred in some deposition coated alloys. Crevice corrosion can probably be initiated due to the hydrolysis reaction. Exfoliation can be considered as a type of intergranular attack, and this is observed in unalloyed Mg above a critical chloride concentration.  相似文献   

15.
Corrosion and passivation behaviour of Mg-based alloy AZ91D was investigated in aqueous sodium borate solutions (pH 9.2) in relation to some test parameters, using electrochemical techniques. Increasing borate concentration (0.01–0.10 M) or temperature up to 298 K leads to increase the corrosion rate of the alloy. However, at temperatures higher than 298 K borate anions have stronger propensity to passivate the alloy, thereby decreases its corrosion rate. For a fixed borate concentration increasing Cl addition is correlated with a more negative corrosion potential and a higher corrosion rate, as well as increase the vulnerability of the anodic passive film for breakdown. The influence of oxidizing potentials over the range −1.5 V to 2.75 V (SCE) on the performance of the alloy in the most aggressive borate solution (0.10 M) reveals that higher potentials, induces better passivation due to formation of a rather thick and more protective n-type semiconducting film. A modified Randles circuit including Warburg impedance to account for the diffusion of reactants or products through the surface film was adopted to analyse the EIS data, that gave impedance parameters in good agreement with the results of open circuit potential and dc polarization measurements.  相似文献   

16.
The electrochemical behavior of 316L stainless steel was investigated in acid chloride environments, and pitting potentials were determined electrochemically and chemically. An increase in the anodic maximum current density was observed upon decreasing the cathodic potential from which the scan was initiated to determine the polarization curve. To determine the critical pitting potential through the chemical method, the potential was increased by increasing the concentration of ferric ions in ferric chloride while holding the chloride ion concentration constant with sodium chloride. When 316L stainless steel was immersed in 15 g/1 of FeCl36H2O containing the same chloride ion concentration as 5% NaCl with pH=2 at 57°C, the corrosion potential increased to 0.47 V (SHE) within two minutes due to initial passivation. Immediately after reaching 0.47 V (SHE), which was just above the pitting potential of 0.45 V (SHE) determined electrochemically in 5% NaCl (pH=2, 57°C), the corrosion potential continuously decreased, indicating the onset and propagation of pitting corrosion. A correlation between the electrochemical and chemical methods can be verified if the proper measurements are made and the observations are properly interpreted.  相似文献   

17.
磷酸钠在NaCl溶液中对AZ31镁合金的缓蚀作用   总被引:1,自引:0,他引:1  
采用电化学阻抗法、动电位极化曲线法、全浸泡失重法和扫描电镜,研究了在3.5%(质量分数)Na Cl溶液中磷酸钠(Na3PO4)对AZ31镁合金腐蚀的抑制作用。结果表明:Na3PO4对3.5%Na Cl溶液中的AZ31镁合金具有缓蚀作用,其缓蚀率随着Na3PO4含量增大逐渐提高,当Na3PO4质量浓度为1.0 g/L时,缓蚀率达到81.5%。结合扫描电镜分析表明,Na3PO4在镁合金表面形成含有Mg(OH)2和Mg3(PO4)2的保护层,这层致密的膜减少了基体与Cl-接触,抑制了镁合金的阳极反应。  相似文献   

18.
A wavelet variance analysis procedure has been used for the characterisation of electrochemical noise measurements (ENM) made during corrosion of three grades of austenitic and superduplex stainless steels, with varying sulphur contents, when exposed to chloride media. The resulting electrochemical noise has been interpreted in terms of coupled current and free corrosion potential measurements. The wavelet variance exponent has been used to characterise the behaviour of the signals. It is shown that the wavelet analysis technique is able to discriminate between various corrosion processes covering a wide range of ENM.  相似文献   

19.
ABSTRACT

Effects of electrolyte thickness, chloride ion concentration, and an external direct current electric field (DCEF) on the corrosion behaviour of silver under a thin electrolyte layer (TEL) were investigated using electrochemical and surface techniques. The results indicate the corrosion rate of silver increases with the decrease of TEL thickness and the increase of chloride ion concentration. Moreover, an interesting conclusion was drawn that the corrosion rate of silver near the positive plate of DCEF first increases and then decreases with the increase of electric field intensity. In a DCEF, different polarisation behaviours of silver at different positions were attributed to the differences of the local corrosion environment.  相似文献   

20.
The corrosion behaviour of the Sn94.5Ag3.8Cu1.5 (SAC) eutectic alloy was investigated in 0.1 M NaCl solution by potentiodynamic polarization and impedance spectroscopy measurements and compared with that of the conventional Sn73.9Pb23.1 eutectic solder employed for a long time in the packaging of microelectronic components and devices. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) were used to characterize the SAC eutectic alloy prior to and after the electrochemical tests. The electrochemical results indicated that the Sn–Ag–Cu eutectic alloy exhibits better corrosion behaviour than the Sn–Pb eutectic solder in NaCl solution. The presence of a corrosion products layer constituted by tin oxy‐chloride was detected at the surface of both alloys investigated after the electrochemical tests. The better corrosion behaviour of SAC eutectic alloy compared to Sn–Pb eutectic solder is ascribed to the formation of a more compact surface film of corrosion products with improved protective properties owing to the presence of copper and silver, as revealed by EPMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号