首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We document our Fortran 77 code for multicanonical simulations of 4D U(1) lattice gauge theory in the neighborhood of its phase transition. This includes programs and routines for canonical simulations using biased Metropolis heatbath updating and overrelaxation, determination of multicanonical weights via a Wang-Landau recursion, and multicanonical simulations with fixed weights supplemented by overrelaxation sweeps. Measurements are performed for the action, Polyakov loops and some of their structure factors. Many features of the code transcend the particular application and are expected to be useful for other lattice gauge theory models as well as for systems in statistical physics.

Program summary

Program title: STMC_U1MUCACatalogue identifier: AEET_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEET_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 18 376No. of bytes in distributed program, including test data, etc.: 205 183Distribution format: tar.gzProgramming language: Fortran 77Computer: Any capable of compiling and executing Fortran codeOperating system: Any capable of compiling and executing Fortran codeClassification: 11.5Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors.Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars.Running time: The prepared tests runs took up to 74 minutes to execute on a 2 GHz PC.  相似文献   

3.
A computational approach is presented for efficient solution of two-dimensional few-body problems, such as quantum dots or excitonic complexes, using the stochastic variational method. The computer program can be used to calculate the energies and wave functions of various two-dimensional systems.

Program summary

Program title: svm-2dCatalogue identifier: AEBE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5091No. of bytes in distributed program, including test data, etc.: 130 963Distribution format: tar.gzProgramming language: Fortran 90Computer: The program should work on any system with a Fortran 90 compilerOperating system: The program should work on any system with a Fortran 90 compilerClassification: 7.3Nature of problem: Variational calculation of energies and wave functions using Correlated Gaussian basis.Solution method: Two-dimensional few-electron problems are solved by the variational method. The ground state wave function is expanded into Correlated Gaussian basis functions and the parameters of the basis states are optimized by a stochastic selection procedure. Accurate results can be obtained for 2-6 electron systems.Running time: A couple of hours for a typical system.  相似文献   

4.
Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post-DFT calculation approach, i.e. by applying the functional to the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N2 where N is the number of points in which the density is defined, and a massively parallel calculation is welcome for a wider applicability of the new approach. In this article we present a code which accomplishes this goal.

Program summary

Program title: JuNoLoCatalogue identifier: AEFM_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFM_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 176 980No. of bytes in distributed program, including test data, etc.: 2 126 072Distribution format: tar.gzProgramming language: Fortran 90Computer: any architecture with a Fortran 90 compilerOperating system: Linux, AIXHas the code been vectorised or parallelized?: Yes, from 1 to 65536 processors may be used.RAM: depends strongly on the problem's size.Classification: 7.3External routines:• FFTW (http://www.tw.org/)• MPI (http://www.mcs.anl.gov/research/projects/mpich2/ or http://www.lam-mpi.org/)Nature of problem: Obtaining the value of the nonlocal vdW-DF energy based on the charge density distribution obtained from some Density Functional Theory code.Solution method: Numerical calculation of the double sum is implemented in a parallel F90 code. Calculation of this sum yields the required nonlocal vdW-DF energy.Unusual features: Binds to virtually any DFT program.Additional comments: Excellent parallelization features.Running time: Depends strongly on the size of the problem and the number of CPUs used.  相似文献   

5.
Fortran 77 code is presented for a hybrid method of the Metropolis Monte Carlo (MMC) and Reverse Monte Carlo (RMC) for the simulation of amorphous silicon and carbon structures. In additional to the usual constraints of the pair correlation functions and average coordination, the code also incorporates an optional energy constraint. This energy constraint is in the form of either the Environment Dependent Interatomic Potential (applicable to silicon and carbon) and the original and modified Stillinger-Weber potentials (applicable to silicon). The code also allows porous systems to be modeled via a constraint on porosity and internal surface area using a novel restriction on the available simulation volume.

Program summary

Program title: HRMC version 1.0Catalogue identifier: AEAO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAO_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 200 894No. of bytes in distributed program, including test data, etc.: 907 557Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Any computer capable of running executables produced by the g77 Fortran compilerOperating system: Unix, WindowsRAM: Depends on the type of empirical potential use, number of atoms and which constraints are employedClassification: 7.7Nature of problem: Atomic modeling using empirical potentials and experimental dataSolution method: Monte CarloAdditional comments: The code is not standard FORTRAN 77 but includes some additional features and therefore generates errors when compiled using the Nag95 compiler. It does compile successfully with the GNU g77 compiler (http://www.gnu.org/software/fortran/fortran.html).Running time: Depends on the type of empirical potential use, number of atoms and which constraints are employed. The test included in the distribution took 37 minutes on a DEC Alpha PC.  相似文献   

6.
A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube.

Program summary

Program title: CYLWAVECatalogue identifier: AECL_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3673No. of bytes in distributed program, including test data, etc.: 35 237Distribution format: tar.gzProgramming language: Fortran 77Computer: RISC workstationsOperating system: UNIXRAM: 120 MBytesClassification: 16.7, 16.10External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file).Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential.Solution method: Time dependent wavepacket propagation.Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.  相似文献   

7.
We present a driver program for performing replica-exchange molecular dynamics simulations with the Tinker package. Parallelization is based on the Message Passing Interface, with every replica assigned to a separate process. The algorithm is not communication intensive, which makes the program suitable for running even on loosely coupled cluster systems. Particular attention is paid to the practical aspects of analyzing the program output.

Program summary

Program title: TiReXCatalogue identifier: AEEK_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEK_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 43 385No. of bytes in distributed program, including test data, etc.: 502 262Distribution format: tar.gzProgramming language: Fortran 90/95Computer: Most UNIX machinesOperating system: LinuxHas the code been vectorized or parallelized?: parallelized with MPIClassification: 16.13External routines: TINKER version 4.2 or 5.0, built as a libraryNature of problem: Replica-exchange molecular dynamics.Solution method: Each replica is assigned to a separate process; temperatures are swapped between replicas at regular time intervals.Running time: The sample run may take up to a few minutes.  相似文献   

8.
We present a computer package designed to generate and test norm-conserving pseudo-potentials within Density Functional Theory. The generated pseudo-potentials can be either non-relativistic, scalar relativistic or fully relativistic and can explicitly include semi-core states. A wide range of exchange-correlation functionals is included.

Program summary

Program title: Atomic Pseudo-potentials Engine (APE)Catalogue identifier: AEAC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAC_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 88 287No. of bytes in distributed program, including test data, etc.: 649 959Distribution format: tar.gzProgramming language: Fortran 90, CComputer: any computer architecture, running any flavor of UNIXOperating system: GNU/LinuxRAM: <5 MbClassification: 7.3External routines: GSL (http://www.gnu.org/software/gsl/)Nature of problem: Determination of atomic eigenvalues and wave-functions using relativistic and nonrelativistic Density-Functional Theory. Construction of pseudo-potentials for use in ab-initio simulations.Solution method: Grid-based integration of the Kohn-Sham equations.Restrictions: Relativistic spin-polarized calculations are not possible. The set of exchange-correlation functionals implemented in the code does not include orbital-dependent functionals.Unusual features: The program creates pseudo-potential files suitable for the most widely used ab-initio packages and, besides the standard non-relativistic Hamann and Troullier-Martins potentials, it can generate pseudo-potentials using the relativistic and semi-core extensions to the Troullier-Martins scheme. APE also has a very sophisticated and user-friendly input system.Running time: The example given in this paper (Si) takes 10 s to run on a Pentium IV machine clocked at 2 GHz.  相似文献   

9.
10.
11.
This paper discusses the concept, application, and usefulness of software design patterns for scientific programming in Fortran 90/95. An example from the discipline of object-oriented design patterns, that of a game based on navigation through a maze, is used to describe how some important patterns can be implemented in Fortran 90/95 and how the progressive introduction of design patterns can usefully restructure Fortran software as it evolves. This example is complemented by a discussion of how design patterns have been used in a real-life simulation of Particle-in-Cell plasma physics. The following patterns are mentioned in this paper: Factory, Strategy, Template, Abstract Factory and Facade.

Program summary

Program title: mazev1, mazev2, mazev3Catalogue identifier: AEAI_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAI_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1958No. of bytes in distributed program, including test data, etc.: 17 100Distribution format: tar.gzProgramming language: Fortran 95Computer: PC/MacOperating system: Unix/Linux/Mac (FreeBSD)/Windows (Cygwin)RAM: These are interactive programs with small (KB) memory requirementsClassification: 6.5, 20Nature of problem: A sequence of programs which demonstrate the use of object oriented design patterns for the restructuring of Fortran 90/95 software. The programs implement a simple maze game similar to that described in [1].Solution method: Restructuring uses versions of the Template, Strategy and Factory design patterns.Running time: Interactive.References:
[1] 
E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object Oriented Software, Addison-Wesley, 1995, ISBN 0201633612.
  相似文献   

12.
When one deals with data drawn from continuous variables, a histogram is often inadequate to display their probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that, the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step function, so that its differentiation does not give a smooth probability density. Based on Fourier series expansion and Kolmogorov tests, we introduce a simple method, which overcomes this problem. Error bars on the estimated probability density are calculated using a jackknife method. We give several examples and provide computer code reproducing them. You may want to look at the corresponding figures 4 to 9 first.

Program summary

Program title: cdf_to_pdCatalogue identifier: AEBC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBC_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2758No. of bytes in distributed program, including test data, etc.: 18 594Distribution format: tar.gzProgramming language: Fortran 77Computer: Any capable of compiling and executing Fortran codeOperating system: Any capable of compiling and executing Fortran codeClassification: 4.14, 9Nature of problem: When one deals with data drawn from continuous variables, a histogram is often inadequate to display the probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that, the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step function, so that its differentiation does not give a smooth probability density.Solution method: Based on Fourier series expansion and Kolmogorov tests, we introduce a simple method, which overcomes this problem. Error bars on the estimated probability density are calculated using a jackknife method. Several examples are included in the distribution file.Running time: The test runs provided take only a few seconds to execute.  相似文献   

13.
A library for reading and writing data in the SUSY Les Houches Accord 2 format is presented. The implementation is in native Fortran 77. The data are contained in a single array conveniently indexed by preprocessor statements.

Program summary

Program title: SLHA2LibCatalogue identifier: AEDY_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDY_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 7550No. of bytes in distributed program, including test data, etc.: 160 123Distribution format: tar.gzProgramming language: FortranComputer: For the build process, a Fortran 77 compiler in a Unixish environment (make, shell) are requiredOperating system: Linux, Mac OS, Windows (Cygwin), Tru64 UnixRAM: The SLHA Record is currently 88 944 bytes longClassification: 4.14, 11.6Nature of problem: Exchange of SUSY parameters and decay information in an ASCII file format.Solution method: The SLHA2Lib provides routines for reading and writing files in the SUSY Les Houches Accord 2 format, a common interchange format for SUSY parameters and decay data.Restrictions: The fixed-sized array that holds the SLHA2 data necessarily limits the amount of decay data that can be stored. This limit can be enlarged by editing and re-running the SLHA2.m program.Unusual features: Data are transported in a single “double complex” array in Fortran, indexed through preprocessor macros. This is about the simplest conceivable container and needs neither dynamic memory allocation nor Fortran extension like structures.Running time: Both reading and writing a SLHA file are typically in the range of a few milliseconds.  相似文献   

14.
Exact expressions are presented for efficient computation of the weights in Gauss-Legendre and Chebyshev quadratures for selected singular integrands. The singularities may be of Cauchy type, logarithmic type or algebraic-logarithmic end-point branching points. We provide Fortran 90 routines for computing the weights for both the Gauss-Legendre and the Chebyshev (Fejér-1) meshes whose size can be set by the user.

New program summary

Program title: SINGQUADCatalogue identifier: AEBR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBR_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 4128No. of bytes in distributed program, including test data, etc.: 25 815Distribution format: tar.gzProgramming language: Fortran 90Computer: Any with a Fortran 90 compilerOperating system: Linux, Windows, MacRAM: Depending on the complexity of the problemClassification: 4.11Nature of problem: Program provides Gauss-Legendre and Chebyshev (Fejér-1) weights for various singular integrands.Solution method: The weights are obtained from the condition that the quadrature of order N must be exact for a polynomial of degree?(N−1). The weights are expressed as moments of the singular kernels associated with Legendre or Chebyshev polynomials. These moments are obtained in analytic form amenable for computation.Additional comments: If the NAGWare f95 compiler is used, the option, “-kind = byte”, must be included in the compile command lines of the Makefile.Running time: The test run supplied with the distribution takes a couple of seconds to execute.  相似文献   

15.
We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence to the true ground state. Versions are given for the one-, two-, and three-dimensional equation, using either a spectral method, well suited for harmonic trapping potentials, or a spatial grid.

Program summary

Program title: GPODACatalogue identifier: ADZN_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZN_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5339No. of bytes in distributed program, including test data, etc.: 19 426Distribution format: tar.gzProgramming language: Fortran 90Computer: ANY (Compilers under which the program has been tested: Absoft Pro Fortran, The Portland Group Fortran 90/95 compiler, Intel Fortran Compiler)RAM: From <1 MB in 1D to ∼102 MB for a large 3D gridClassification: 2.7, 4.9External routines: LAPACK, BLAS, DFFTPACKNature of problem: The order parameter (or wave function) of a Bose-Einstein condensate (BEC) is obtained, in a mean field approximation, by the Gross-Pitaevskii equation (GPE) [F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463]. The GPE is a nonlinear Schrödinger-like equation, including here a confining potential. The stationary state of a BEC is obtained by finding the ground state of the time-independent GPE, i.e., the order parameter that minimizes the energy. In addition to the standard three-dimensional GPE, tight traps can lead to effective two- or even one-dimensional BECs, so the 2D and 1D GPEs are also considered.Solution method: The ground state of the time-independent of the GPE is calculated using the Optimal Damping Algorithm [E. Cancès, C. Le Bris, Int. J. Quantum Chem. 79 (2000) 82]. Two sets of programs are given, using either a spectral representation of the order parameter [C.M. Dion, E. Cancès, Phys. Rev. E 67 (2003) 046706], suitable for a (quasi) harmonic trapping potential, or by discretizing the order parameter on a spatial grid.Running time: From seconds in 1D to a few hours for large 3D grids  相似文献   

16.
A C++ class named Davidson is presented for determining a few eigenpairs with lowest or alternatively highest values of a large, real, symmetric matrix. The algorithm described by Stathopoulos and Fischer is used. The exception mechanism is involved to report the errors. The class is written in ANSI C++, so it is fully portable. In addition a console program as well as a program with graphical user interface for Microsoft Windows is attached, which allow one to calculate the lowest eigenstates of time-independent Schrödinger equation for a given binding potential in one, two or three spatial dimensions. The package contains the classes providing often used potential functions (model atom potential, Coulomb potential, square well potential and Kramers-Henneberger well potential) as well as a possibility to use any potential stored in a file (then any dimensionality of the problem is allowed).The described code is the subject of M.Sc. thesis of T.D. prepared under the supervision of J.M.

Program summary

Program title: DavidsonCatalogue identifier: ADZM_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZM_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3 037 055No. of bytes in distributed program, including test data, etc.: 20 002 609Distribution format: tar.gzProgramming language: C++Computer: AllOperating system: AnyRAM: User's parameters dependentWord size: 32 and 64 bitsSupplementary material: Test results for the 2D and 3D cases is availableClassification: 4, 4.8Nature of problem: Finding a few extreme eigenpairs of a real, symmetric, sparse matrix. Examples in quantum optics (interaction of matter with a laser field).Solution method: Davidson algorithmRunning time: The test example included in the distribution package (1D matrix) takes approximately 30 minutes to run. 2D matrix calculations can take hours and 3D, days, to run.  相似文献   

17.
We describe a program for computing the abundances of light elements produced during Big Bang Nucleosynthesis which is publicly available at http://parthenope.na.infn.it/. Starting from nuclear statistical equilibrium conditions the program solves the set of coupled ordinary differential equations, follows the departure from chemical equilibrium of nuclear species, and determines their asymptotic abundances as function of several input cosmological parameters as the baryon density, the number of effective neutrino, the value of cosmological constant and the neutrino chemical potential. The program requires commercial NAG library routines.

Program summary

Program title: PArthENoPECatalogue identifier: AEAV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 10 033No. of bytes in distributed program, including test data, etc.: 46 002Distribution format: tar.gzProgramming language: Fortran 77Computer: PC-compatible running Fortran on Unix, MS Windows or LinuxOperating system: Windows 2000, Windows XP, LinuxClassification: 1.2, 1.9, 17.8External routines: NAG LibrariesNature of problem: Computation of yields of light elements synthesized in the primordial universe.Solution method: BDF method for the integration of the ODEs, implemented in a NAG routine.Running time: 90 sec with default parameters on a Dual Xeon Processor 2.4 GHz with 2 GB RAM.  相似文献   

18.
A computer package (CNMS) is presented aimed at the solution of finite-level quantum optimal control problems. This package is based on a recently developed computational strategy known as monotonic schemes.Quantum optimal control problems arise in particular in quantum optics where the optimization of a control representing laser pulses is required. The purpose of the external control field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources, are accommodated through appropriately chosen cost functionals.

Program summary

Program title: CNMSCatalogue identifier: ADEB_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 770No. of bytes in distributed program, including test data, etc.: 7098Distribution format: tar.gzProgramming language: MATLAB 6Computer: AMD Athlon 64 × 2 Dual, 2:21 GHz, 1:5 GB RAMOperating system: Microsoft Windows XPWord size: 32Classification: 4.9Nature of problem: Quantum controlSolution method: IterativeRunning time: 60-600 sec  相似文献   

19.
We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations.

Program summary

Program title: BOKASUNCatalogue identifier: AECG_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECG_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 9404No. of bytes in distributed program, including test data, etc.: 104 123Distribution format: tar.gzProgramming language: FORTRAN77Computer: Any computer with a Fortran compiler accepting FORTRAN77 standard. Tested on various PC's with LINUXOperating system: LINUXRAM: 120 kbytesClassification: 4.4Nature of problem: Any integral arising in the evaluation of the two-loop sunrise Feynman diagram can be expressed in terms of a given set of Master Integrals, which should be calculated numerically. The program provides a fast and precise evaluation method of the Master Integrals for arbitrary (but not vanishing) masses and arbitrary value of the external momentum.Solution method: The integrals depend on three internal masses and the external momentum squared p2. The method is a combination of an accelerated expansion in 1/p2 in its (pretty large!) region of fast convergence and of a Runge-Kutta numerical solution of a system of linear differential equations.Running time: To obtain 4 Master Integrals on PC with 2 GHz processor it takes 3 μs for series expansion with pre-calculated coefficients, 80 μs for series expansion without pre-calculated coefficients, from a few seconds up to a few minutes for Runge-Kutta method (depending on the required accuracy and the values of the physical parameters).  相似文献   

20.
An exact expression for the dipole radial integral of hydrogen has been given by Gordon [Ann. Phys. 2 (1929) 1031]. It contains two hypergeometric functions F(a,b;c;x), which are difficult to calculate directly, when the (negative) integers a, b are large, as in the case of high Rydberg states of hydrogenic ions. We have derived a simple method [D. Hoang-Binh, Astron. Astrophys. 238 (1990) 449], using a recurrence relation to calculate exactly F, starting from two initial values, which are very easy to compute. We present here a numerical code using this method. The code computes exact hydrogenic radial integrals, oscillator strengths, Einstein coefficients, and lifetimes, for principal quantum numbers up to 1000.

Program summary

Program title: ba5.2Catalogue identifier: ADUU_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUU_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1400No. of bytes in distributed program, including test data, etc.: 11 737Distribution format: tar.gzProgramming language: Fortran 77Computer: PC, iMacOperating system: Linux/Unix, MacOS 9.0RAM: Less than 1 MBClassification: 2, 2.2Catalogue identifier of previous version: ADUU_v1_0Journal reference of previous version: Comput. Phys. Comm. 166 (2005) 191Does the new version supersede the previous version?: YesNature of problem: Exact calculation of atomic data.Solution method: Use of a recurrence relation to compute hypergeometric functions.Reasons for new version: This new version computes additional important related data, namely, the total Einstein coefficients, and radiative lifetimes.Summary of revisions: Values of the total Einstein transition probability from an upper level n to a lower level n are computed, as well as the radiative lifetime of a level n.Running time: About 2 seconds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号