首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exact expressions are presented for efficient computation of the weights in Gauss-Legendre and Chebyshev quadratures for selected singular integrands. The singularities may be of Cauchy type, logarithmic type or algebraic-logarithmic end-point branching points. We provide Fortran 90 routines for computing the weights for both the Gauss-Legendre and the Chebyshev (Fejér-1) meshes whose size can be set by the user.

New program summary

Program title: SINGQUADCatalogue identifier: AEBR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBR_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 4128No. of bytes in distributed program, including test data, etc.: 25 815Distribution format: tar.gzProgramming language: Fortran 90Computer: Any with a Fortran 90 compilerOperating system: Linux, Windows, MacRAM: Depending on the complexity of the problemClassification: 4.11Nature of problem: Program provides Gauss-Legendre and Chebyshev (Fejér-1) weights for various singular integrands.Solution method: The weights are obtained from the condition that the quadrature of order N must be exact for a polynomial of degree?(N−1). The weights are expressed as moments of the singular kernels associated with Legendre or Chebyshev polynomials. These moments are obtained in analytic form amenable for computation.Additional comments: If the NAGWare f95 compiler is used, the option, “-kind = byte”, must be included in the compile command lines of the Makefile.Running time: The test run supplied with the distribution takes a couple of seconds to execute.  相似文献   

2.
A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++.

Program summary

Program title: GenMinCatalogue identifier: AEAR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 35 810No. of bytes in distributed program, including test data, etc.: 436 613Distribution format: tar.gzProgramming language: GNU-C++, GNU-C, GNU Fortran 77Computer: The tool is designed to be portable in all systems running the GNU C++ compilerOperating system: The tool is designed to be portable in all systems running the GNU C++ compilerRAM: 200 KBWord size: 32 bitsClassification: 4.9Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero).Solution method: Grammatical evolution and a stopping rule.Running time: Depending on the objective function. The test example given takes only a few seconds to run.  相似文献   

3.
We present a driver program for performing replica-exchange molecular dynamics simulations with the Tinker package. Parallelization is based on the Message Passing Interface, with every replica assigned to a separate process. The algorithm is not communication intensive, which makes the program suitable for running even on loosely coupled cluster systems. Particular attention is paid to the practical aspects of analyzing the program output.

Program summary

Program title: TiReXCatalogue identifier: AEEK_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEK_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 43 385No. of bytes in distributed program, including test data, etc.: 502 262Distribution format: tar.gzProgramming language: Fortran 90/95Computer: Most UNIX machinesOperating system: LinuxHas the code been vectorized or parallelized?: parallelized with MPIClassification: 16.13External routines: TINKER version 4.2 or 5.0, built as a libraryNature of problem: Replica-exchange molecular dynamics.Solution method: Each replica is assigned to a separate process; temperatures are swapped between replicas at regular time intervals.Running time: The sample run may take up to a few minutes.  相似文献   

4.
We present a program for the numerical evaluation of form factors entering the calculation of one-loop amplitudes with up to six external legs. The program is written in Fortran95 and performs the reduction to a certain set of basis integrals numerically, using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with massless internal particles in a fast and numerically stable way.

Program summary

Program title: golem95_v1.0Catalogue identifier: AEEO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEO_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 50 105No. of bytes in distributed program, including test data, etc.: 241 657Distribution format: tar.gzProgramming language: Fortran95Computer: Any computer with a Fortran95 compilerOperating system: Linux, UnixRAM: RAM used per form factor is insignificant, even for a rank six six-point form factorClassification: 4.4, 11.1External routines: Perl programming language (http://www.perl.com/)Nature of problem: Evaluation of one-loop multi-leg tensor integrals occurring in the calculation of next-to-leading order corrections to scattering amplitudes in elementary particle physics.Solution method: Tensor integrals are represented in terms of form factors and a set of basic building blocks (“basis integrals”). The reduction to the basis integrals is performed numerically, thus avoiding the generation of large algebraic expressions.Restrictions: The current version contains basis integrals for massless internal particles only. Basis integrals for massive internal particles will be included in a future version.Running time: Depends on the nature of the problem. A rank 6 six-point form factor at a randomly chosen kinematic point takes 0.13 seconds on an Intel Core 2 Q9450 2.66 GHz processor, without any optimisation. With compiler optimisation flag -O3 the same point takes 0.09 seconds. Timings for lower point form factors are: All form factors for five-point functions from rank 0 to rank 4: 0.04 s. All form factors for rank 5 five-point functions: 0.05 s. All form factors for four-point functions from rank 0 to rank 4: 0.01 s.  相似文献   

5.
6.
An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk.

Program summary

Program title: TransmittanceCatalogue identifier: AEBQ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5778No. of bytes in distributed program, including test data, etc.: 90 474Distribution format: tar.gzProgramming language: JavaComputer: Developed on PC-Pentium platformOperating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OSRAM: VariableClassification: 18Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter.Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool.Running time: Real-time simulations  相似文献   

7.
Nowadays the state of the art Density Functional Theory (DFT) codes are based on local (LDA) or semilocal (GGA) energy functionals. Recently the theory of a truly nonlocal energy functional has been developed. It has been used mostly as a post-DFT calculation approach, i.e. by applying the functional to the charge density calculated using any standard DFT code, thus obtaining a new improved value for the total energy of the system. Nonlocal calculation is computationally quite expensive and scales as N2 where N is the number of points in which the density is defined, and a massively parallel calculation is welcome for a wider applicability of the new approach. In this article we present a code which accomplishes this goal.

Program summary

Program title: JuNoLoCatalogue identifier: AEFM_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFM_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 176 980No. of bytes in distributed program, including test data, etc.: 2 126 072Distribution format: tar.gzProgramming language: Fortran 90Computer: any architecture with a Fortran 90 compilerOperating system: Linux, AIXHas the code been vectorised or parallelized?: Yes, from 1 to 65536 processors may be used.RAM: depends strongly on the problem's size.Classification: 7.3External routines:• FFTW (http://www.tw.org/)• MPI (http://www.mcs.anl.gov/research/projects/mpich2/ or http://www.lam-mpi.org/)Nature of problem: Obtaining the value of the nonlocal vdW-DF energy based on the charge density distribution obtained from some Density Functional Theory code.Solution method: Numerical calculation of the double sum is implemented in a parallel F90 code. Calculation of this sum yields the required nonlocal vdW-DF energy.Unusual features: Binds to virtually any DFT program.Additional comments: Excellent parallelization features.Running time: Depends strongly on the size of the problem and the number of CPUs used.  相似文献   

8.
Fortran 77 code is presented for a hybrid method of the Metropolis Monte Carlo (MMC) and Reverse Monte Carlo (RMC) for the simulation of amorphous silicon and carbon structures. In additional to the usual constraints of the pair correlation functions and average coordination, the code also incorporates an optional energy constraint. This energy constraint is in the form of either the Environment Dependent Interatomic Potential (applicable to silicon and carbon) and the original and modified Stillinger-Weber potentials (applicable to silicon). The code also allows porous systems to be modeled via a constraint on porosity and internal surface area using a novel restriction on the available simulation volume.

Program summary

Program title: HRMC version 1.0Catalogue identifier: AEAO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAO_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 200 894No. of bytes in distributed program, including test data, etc.: 907 557Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Any computer capable of running executables produced by the g77 Fortran compilerOperating system: Unix, WindowsRAM: Depends on the type of empirical potential use, number of atoms and which constraints are employedClassification: 7.7Nature of problem: Atomic modeling using empirical potentials and experimental dataSolution method: Monte CarloAdditional comments: The code is not standard FORTRAN 77 but includes some additional features and therefore generates errors when compiled using the Nag95 compiler. It does compile successfully with the GNU g77 compiler (http://www.gnu.org/software/fortran/fortran.html).Running time: Depends on the type of empirical potential use, number of atoms and which constraints are employed. The test included in the distribution took 37 minutes on a DEC Alpha PC.  相似文献   

9.
In this paper we present the package S@M (Spinors@Mathematica) which implements the spinor-helicity formalism in Mathematica. The package allows the use of complex-spinor algebra along with the multi-purpose features of Mathematica. The package defines the spinor objects with their basic properties along with functions to manipulate them. It also offers the possibility of evaluating the spinorial objects numerically at every computational step. The package is therefore well suited to be used in the context of on-shell technology, in particular for the evaluation of scattering amplitudes at tree- and loop-level.

Program summary

Program title: S@MCatalogue identifier: AEBF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 14 404No. of bytes in distributed program, including test data, etc.: 77 536Distribution format: tar.gzProgramming language: MathematicaComputer: All computers running MathematicaOperating system: Any system running MathematicaClassification: 4.4, 5, 11.1Nature of problem: Implementation of the spinor-helicity formalismSolution method: Mathematica implementationRunning time: The notebooks provided with the package take only a few seconds to run.  相似文献   

10.
We document our Fortran 77 code for multicanonical simulations of 4D U(1) lattice gauge theory in the neighborhood of its phase transition. This includes programs and routines for canonical simulations using biased Metropolis heatbath updating and overrelaxation, determination of multicanonical weights via a Wang-Landau recursion, and multicanonical simulations with fixed weights supplemented by overrelaxation sweeps. Measurements are performed for the action, Polyakov loops and some of their structure factors. Many features of the code transcend the particular application and are expected to be useful for other lattice gauge theory models as well as for systems in statistical physics.

Program summary

Program title: STMC_U1MUCACatalogue identifier: AEET_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEET_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 18 376No. of bytes in distributed program, including test data, etc.: 205 183Distribution format: tar.gzProgramming language: Fortran 77Computer: Any capable of compiling and executing Fortran codeOperating system: Any capable of compiling and executing Fortran codeClassification: 11.5Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors.Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars.Running time: The prepared tests runs took up to 74 minutes to execute on a 2 GHz PC.  相似文献   

11.
The Motion4D-library solves the geodesic equation as well as the parallel- and Fermi-Walker-transport in four-dimensional Lorentzian spacetimes numerically. Initial conditions are given with respect to natural local tetrads which are adapted to the symmetries or the coordinates of the spacetime. Beside some already implemented metrics like the Schwarzschild and Kerr metric, the object oriented structure of the library permits to implement other metrics or integrators in a straight forward manner.

Program summary

Program title: Motion4D-libraryCatalogue identifier: AEEX_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEX_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 150 425No. of bytes in distributed program, including test data, etc.: 5 139 407Distribution format: tar.gzProgramming language: C++Computer: All platforms with a C++ compilerOperating system: Linux, Unix, WindowsRAM: 39 MBytesClassification: 1.5External routines: Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/)Nature of problem: Solve geodesic equation, parallel and Fermi-Walker transport in four-dimensional Lorentzian spacetimes.Solution method: Integration of ordinary differential equationsRunning time: The test runs provided with the distribution require only a few seconds to run.  相似文献   

12.
We describe a program for computing the abundances of light elements produced during Big Bang Nucleosynthesis which is publicly available at http://parthenope.na.infn.it/. Starting from nuclear statistical equilibrium conditions the program solves the set of coupled ordinary differential equations, follows the departure from chemical equilibrium of nuclear species, and determines their asymptotic abundances as function of several input cosmological parameters as the baryon density, the number of effective neutrino, the value of cosmological constant and the neutrino chemical potential. The program requires commercial NAG library routines.

Program summary

Program title: PArthENoPECatalogue identifier: AEAV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 10 033No. of bytes in distributed program, including test data, etc.: 46 002Distribution format: tar.gzProgramming language: Fortran 77Computer: PC-compatible running Fortran on Unix, MS Windows or LinuxOperating system: Windows 2000, Windows XP, LinuxClassification: 1.2, 1.9, 17.8External routines: NAG LibrariesNature of problem: Computation of yields of light elements synthesized in the primordial universe.Solution method: BDF method for the integration of the ODEs, implemented in a NAG routine.Running time: 90 sec with default parameters on a Dual Xeon Processor 2.4 GHz with 2 GB RAM.  相似文献   

13.
Evaluation of pfaffians arises in a number of physics applications, and for some of them a direct method is preferable to using the determinantal formula. We discuss two methods for the numerical evaluation of pfaffians. The first is tridiagonalization based on Householder transformations. The main advantage of this method is its numerical stability that makes unnecessary the implementation of a pivoting strategy. The second method considered is based on Aitken?s block diagonalization formula. It yields to a kind of LU (similar to Cholesky?s factorization) decomposition (under congruence) of arbitrary skew-symmetric matrices that is well suited both for the numeric and symbolic evaluations of the pfaffian. Fortran subroutines (FORTRAN 77 and 90) implementing both methods are given. We also provide simple implementations in Python and Mathematica for purpose of testing, or for exploratory studies of methods that make use of pfaffians.

Program summary

Program title:PfaffianCatalogue identifier: AEJD_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJD_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2281No. of bytes in distributed program, including test data, etc.: 13 226Distribution format: tar.gzProgramming language: Fortran 77 and 90Computer: Any supporting a FORTRAN compilerOperating system: Any supporting a FORTRAN compilerRAM: a few MBClassification: 4.8Nature of problem: Evaluation of the pfaffian of a skew symmetric matrix. Evaluation of pfaffians arises in a number of physics applications involving fermionic mean field wave functions and their overlaps.Solution method: Householder tridiagonalization. Aitken?s block diagonalization formula.Additional comments: Python and Mathematica implementations are provided in the main body of the paper.Running time: Depends on the size of the matrices. For matrices with 100 rows and columns a few milliseconds are required.  相似文献   

14.
This paper discusses the concept, application, and usefulness of software design patterns for scientific programming in Fortran 90/95. An example from the discipline of object-oriented design patterns, that of a game based on navigation through a maze, is used to describe how some important patterns can be implemented in Fortran 90/95 and how the progressive introduction of design patterns can usefully restructure Fortran software as it evolves. This example is complemented by a discussion of how design patterns have been used in a real-life simulation of Particle-in-Cell plasma physics. The following patterns are mentioned in this paper: Factory, Strategy, Template, Abstract Factory and Facade.

Program summary

Program title: mazev1, mazev2, mazev3Catalogue identifier: AEAI_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAI_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1958No. of bytes in distributed program, including test data, etc.: 17 100Distribution format: tar.gzProgramming language: Fortran 95Computer: PC/MacOperating system: Unix/Linux/Mac (FreeBSD)/Windows (Cygwin)RAM: These are interactive programs with small (KB) memory requirementsClassification: 6.5, 20Nature of problem: A sequence of programs which demonstrate the use of object oriented design patterns for the restructuring of Fortran 90/95 software. The programs implement a simple maze game similar to that described in [1].Solution method: Restructuring uses versions of the Template, Strategy and Factory design patterns.Running time: Interactive.References:
[1] 
E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object Oriented Software, Addison-Wesley, 1995, ISBN 0201633612.
  相似文献   

15.
A Fortran program is developed to calculate charge carrier (electron or hole) mobility in disordered semiconductors from first-principles. The method is based on non-adiabatic ab initio molecular dynamics and static master equation, treating dynamic and static disorder on the same footing. We have applied the method to calculate the hole mobility in disordered poly(3-hexylthiophene) conjugated polymers as a function of temperature and electric field and obtained excellent agreements with experimental results. The program could be used to explore structure–mobility relation in disordered semiconducting polymers/organic semiconductors and aid rational design of these materials.

Program summary

Program title: FPMuCatalogue identifier: AEJV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 788 580No. of bytes in distributed program, including test data, etc.: 8 433 024Distribution format: tar.gzProgramming language: Fortran 90Computer: Any architecture with a Fortran 90 compilerOperating system: Linux, WindowsRAM: Proportional to the system size, in our example, 1.2 GBClassification: 7.9Nature of problem: Determine carrier mobility from first-principles in disordered semiconductors as a function of temperature, electric field and carrier concentration.Solution method: Iteratively solve master equation with carrier state energy and transition rates determined from first-principles.Restrictions: Mobility for disordered semiconductors where the carrier wave-functions are localized and the carrier transport is due to phonon-assisted hopping mechanism.Running time: Depending on the system size (about an hour for the example here).  相似文献   

16.
A program package, which facilitates computations in the framework of Analytic approach to QCD, is developed and described in detail. The package includes both the calculated explicit expressions for relevant spectral functions up to the four-loop level and the subroutines for necessary integrals.

Program summary

Program title: QCDMAPTCatalogue identifier: AEGP_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGP_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2579No. of bytes in distributed program, including test data, etc.: 180 052Distribution format: tar.gzProgramming language: Maple 9 and higherComputer: Any which supports Maple 9Operating system: Any which supports Maple 9Classification: 11.1, 11.5, 11.6Nature of problem: Subroutines helping computations within Analytic approach to QCD.Solution method: A program package for Maple is provided. It includes both the explicit expressions for relevant spectral functions and the subroutines for basic integrals used in the framework of Analytic approach to QCD.Running time: Template program running time is about a minute (depends on CPU).  相似文献   

17.
A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.

Program summary

Program title: NIXSW Planewave SolverCatalogue identifier: ADZE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 16 874No. of bytes in distributed program, including test data, etc.: 1 631 874Distribution format: tar.gzProgramming language: Borland C++ Builder 5Computer: Any Windows CompatibleOperating system: Windows 2000 and XPRAM: <10 MBClassification: 7.4Nature of problem: Using NIXSW experimental data to calculate atomic positions of adsorbates.Restrictions: Data from substrates must have cubic, tetragonal or orthorhombic crystal structures i.e. with 90° between conventional cell axes.Running time: Seconds-minutes dependant on the number of plane waves and the number of atomic sites.  相似文献   

18.
We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor.

Program summary

Program title:AdiabaticRotorCatalogue identifier:ADZO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZO_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:479No. of bytes in distributed program, including test data, etc.:4853Distribution format:tar.gzProgramming language:Fortran 90Computer:Pentium-IV, Macintosh Power PC G4Operating system:Linux, Mac OS XRAM:600 KbytesWord size:64 bitsClassification:2.3Nature of problem:The system considered is a thermal ensemble of rotors having a magnetic or electric moment aligned along one of the principal axes. The ensemble is placed in an external field which is turned on adiabatically. The problem is to find the distribution of moments in the presence of the external field.Solution method:There are three adiabatic invariants. The only nontrivial one is the action associated with the polar angle of the rotor axis with respect to external field. It is found by Newton's method.Running time:3 min on a 3 GHz Pentium IV processor.  相似文献   

19.
A package of FORTRAN subroutines is provided for the Brillouin zone (BZ) integration of the Green?s functions (GF) and spectral functions. The relevant weighting factors at sampling points in the BZ are evaluated to high precision with the help of the formulas for both the real and imaginary parts. The analytical properties of implemented expressions are discussed, and their range of validity is determined. The limiting cases when values at the tetrahedron corners coincide are worked out in terms of the finite difference quotients and replaced by the derivatives. The present numerical algorithms are developed for one-, two- and three-dimensional simplexes, with the potential ability of handling simplexes with higher dimensions as well. As an example, the results of computation the simple cubic lattice GF?s are presented.Program summaryProgram title: SimTetCatalogue identifier: AEKF_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEKF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3176No. of bytes in distributed program, including test data, etc.: 19 416Distribution format: tar.gzProgramming language: FortranComputer: Any computer with a Fortran compilerOperating system: Unix, Linux, WindowsRAM: 512 MbytesClassification: 4.11, 7.3Nature of problem: The integration of the Green?s function over the Brillouin zone appears in the computations of many physical quantities in solid-state physics.Solution method: The integral over the Brillouin zone is computed with the tetrahedron linear method. The complex weights are generated with the novel algebraic formulas free of apparent singularities and well suited for automatic computations.Running time: A few μsec per integral.  相似文献   

20.
We describe a numerical model of an internal pellet target to study the beam dynamics in storage rings, where the nuclear experiments with such type of target are planned. In this model the Monte Carlo algorithm is applied to evaluate the particle coordinates and momentum deviation depending on time and parameters of the target. One has to mention that due to statistical character of the pellet distribution in the target the analytical techniques are not applicable. This is also true for the particle distribution in the stored beam, which is influenced by various effects (such as a cooling process, intra-beam scattering, betatron oscillation, space charge effect). In this case only the Monte Carlo technique to model energy straggling in combination with the pellet distribution in the target should be considered.

Program summary

Program title: PETAG01Catalogue identifier: ADZV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1068No. of bytes in distributed program, including test data, etc.: 11 314Distribution format: tar.gzProgramming language: Fortran 77, C/C++Computer: Platform independentOperating system: MS Windows 95/2000/XP, Linux (Unix)RAM: 128 MBClassification: 11.10Nature of problem: Particle beam dynamics with use of the pellet target.Solution method: Monte Carlo with analytical approximation.Running time: dozens of seconds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号