首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
阐述了超纯铁素体不锈钢的超低碳氮的特点及其熔体降碳去氮困难的原因,利用真空降碳去氮的理论结合这方面的研究成果分析和讨论了影响VOD脱碳脱氮的影响因素,并利用VOD现场冶炼的具体数据进行了这些因素的统计分析,在此基础上提出了提高真空度、加强底吹氩搅拌强度、提高入炉钢液温度、提高人炉碳含量和降低人炉氮含量、增加VOD吹氧脱碳时的供氧量、高真空吹氩纯沸腾工艺、选用无碳、或低碳还原料等工艺技术措施,最后介绍了太钢这几年在VOD冶炼超纯铁素体不锈钢采取上述措施后所取得的效果。  相似文献   

2.
周书才  杨杰  杨永均 《钢铁钒钛》2012,33(2):46-49,76
研究了40 t LF炉精炼AISI410不锈钢时,在常压下吹氮气增氮工艺(吹氮流量、吹氮时间及钢液温度)对AISI410不锈钢氮含量的影响,建立了AISI410不锈钢氮溶解度热力学计算模型。结果表明:钢中氮含量随着吹氮时间、氮气流量的增加而增大;常压下吹氮10 min,钢液含氮量可达到0.05%;随着氮流量增加钢液达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高。应用热力学模型进行了分析,不同吹氮条件下氮溶解度实测值与热力学模型计算值较吻合。为LF炉精炼含氮不锈钢控制氮含量提供了理论依据。  相似文献   

3.
针对传统AOD配气方式的缺点,研究了基于魏季和等的脱碳精炼数学模型的配气模型,使AOD脱碳配气可根据钢水碳含量的变化自动调整氧氩比、根据钢水温度变化自动调整供氧强度,以及根据炉役中炉容比的变化自动调整最大供氧强度。该模型应用于AOD不锈钢冶炼系统中,既提高了氧气利用率,又缩短了冶炼时间,而且吨钢氧耗和还原硅消耗也略有改善,取得了较好的效果,为AOD不锈钢冶炼智能化打下了良好的基础。  相似文献   

4.
张永亮 《炼钢》2013,29(1):40-42,47
针对AOD精炼0Cr18Ni9不锈钢时,钢中氮含量和氩气消耗波动较大的问题,研究了AOD精炼工艺因素如钢水初始碳含量、合金含量、温度,及过程吹氧气量、吹氮气量、吹氩气量、吹炼时间等对终点氮含量的影响,研究并优化了AOD的操作工艺参数.  相似文献   

5.
在低碳400系不锈钢中,氮能恶化晶间腐蚀、低温冲击韧性、缺口敏感性和焊接等性能。因此,在低耗、高效前提下降低其氮含量成为AOD冶炼中的重要课题。结合生产试验,通过探讨回归分析法在其吹氩脱氮工艺控制中的应用,结合脱氮的热力学计算对AOD生产实践数据的分析,由拟合方程确定的AOD冶炼410S不锈钢和低碳430不锈钢时氮氩切换点为吹氮450 m3时切换氩气,410S不锈钢正常冶炼时一般吹氩量控制在1 550 m3,低碳430不锈钢AOD吹氩量一般控制在2 050 m3时可以将AOD终点氮含量控制在0.009 0%以下,并降低氩气消耗。  相似文献   

6.
400系不锈钢中的氮能恶化晶间腐蚀、低温冲击韧性、缺口敏感性和焊接等性能,在低耗、高效前提下降低氮含量成为AOD炉冶炼中的重要课题。分析了400系不锈钢冶炼中的脱氮原理,采用不同吹氩工艺研究了0Cr13钢、0Cr17钢、1Cr13钢的吹氩量与AOD炉终点氮含量的对应关系。探讨了用回归分析法确定400系不锈钢吹氩脱氮工艺控制合适的吹氩量、氮氩切换点,并进行了生产试验。  相似文献   

7.
本文应用不锈钢冶炼转化温度理论,对AOD炉冶炼不锈钢脱碳工艺进行了改进,在冶炼不锈钢高碳区纯吹氧气脱碳,达到了降低不锈钢冶炼成本、缩短冶炼时间的效果。  相似文献   

8.
在AOD炉中冶炼铬锰氮奥氏体不锈钢,通过对不同的冶炼控制工艺参数和不同的合金成分在实际生产中对还原期增氮后影响氮含量的不同情况,运用最小二乘法来进行数理统计分析,建立起符合本企业AOD炉冶炼该钢种的增氮工艺参数控制的数学模型.  相似文献   

9.
李永中  赵利荣 《山西冶金》2006,29(2):30-31,34
介绍了AOD炉运用氮气在不锈钢中溶解与脱除理论所开发的氮合金化工艺。在40tAOD炉上冶炼0Cr19Ni9N,0Cr19Ni9NbN,1Cr17Mn6Ni5N,00Cr18Ni5Mo3Si2(N),00Cr22Ni5Mo3N等舍氮不锈钢钢种。不需在线分析钢中氮含量,较为准确地预测与控制钢中氮溶解度值及舍氮不锈钢成品的氮含量。  相似文献   

10.
含氮不锈钢生产工艺研究   总被引:2,自引:0,他引:2  
对含氮不锈钢的AOD炉冶炼工艺难点和高温热塑性进行了研究,得出含氮不锈钢用AOD炉冶炼完全采用氮气进行氮元素合金化工艺是可行的,用模型预测钢中氮含量,不经在线分析钢中氮含量,精度可达到±0.015%;含氮不锈钢的高温热塑性主要受热加工温度、钢中硫含量、氮含量等因素影响.  相似文献   

11.
通过采用氮气增氮的实验,研究了钢液的化学成分、冶炼温度、表面活性元素和吹氮流量对钢液增氮的影响.研究结果表明:钢中的合金元素尤其是Mn、Cr等元素能够增大钢液氮的溶解度;冶炼温度提高,钢液的增氮速率增大;钢中的氧对钢液的增氮有很大的阻碍;吹氮流量增大则钢液的增氮速率相应增大.同时对含氮不锈钢采用吹入氮气增氮工艺进行了探讨,为含氮不锈钢的生产提供了参考.  相似文献   

12.
高氮Fe-Cr-Mn-Ni系奥氏体不锈钢的加压感应熔炼   总被引:3,自引:0,他引:3  
张峰  李光强  朱诚意 《特殊钢》2005,26(5):10-13
采用MgO坩埚高频真空感应炉在氮气压力0.45~1.0MPa、温度1640~1700℃下,对加压感应熔炼高氮Fe-Cr-Mn-Ni系奥氏体不锈钢进行了实验研究。结果表明,1913K、1.0MPa氮气氛中Cr12、Cr17Mn5Ni5、Cr19Mn15和Cr20Mn8不锈钢中氮的溶解度分别为0.391%、0.692%、1.120%和0.899%,氮在液态不锈钢中的溶解与Sievert定律有所偏离;氧浓度在350×10-6内,1913K、1.0MPa氮气氛中Cr20Mn8钢液的吸氮反应仍为一级反应,其传质系数为0.023cm·s-1;随钢中氧浓度的增加,液态钢的吸氮速率和钢液中的平衡氮含量显著降低。  相似文献   

13.
采用当量法对高氮钢钢液中的氮含量进行了推导,并用304不锈钢和316不锈钢的有关试验数据进行了验证,确定当量法可以进行高氮钢液氮溶解度的估算。随着合金含量的提高,氮在钢液中的溶解度会逐渐偏离Sieverts定律。通过热力学分析,得出了6Cr21Mn10MoVNbN气阀钢钢液中氮溶解度的估算公式。  相似文献   

14.
 To replace nickel-based stainless steel, a nitrogen-bearing stainless steel was produced to lower the production cost stemming from the shortage of nickel recourses. Thermodynamic model to calculate the saturated nitrogen content in the stainless steel was developed and the model was validated by experimental measurements performed with a high temperature induction furnace. Nitrogen gas under constant pressure was injected into the molten steel with a top lance. Thus, the nitrogen was transferred to the molten stainless steel. The effects of chemical composition, temperature, superficial active elements and nitrogen flow rate on the transfer of nitrogen to the steel were investigated and discussed. The results showed that the dissolution rate of nitrogen in the molten steel increases with a higher temperature and larger nitrogen flow rate but decreases significantly with an increase in the content of surface-active elements. Alloying elements such as chromium and manganese having a negative interaction coefficient can increase the dissolution of nitrogen in the molten steel. It was also proposed that the primary factor affecting the final saturated nitrogen content is temperature rather than the dissolved oxygen content.  相似文献   

15.
Nitrogen solubility in the austenitic stainless steel melts was measured in the laboratory by bubbling nitrogen gas under different partial pressures of nitrogen and temperatures. A new thermodynamic model for the calculation of nitrogen solubility in molten stainless steel in a wide range of alloy concentrations, temperatures, and pressures has been successfully established by introducing a new term for the effect of pressure on the nitrogen activity coefficient. The calculation results were in good agreement with the measured values. The influences of temperature, nitrogen partial pressure and chemical composition on the nitrogen solubility in molten stainless steel are discussed based on the calculated results. It is possible to produce high nitrogen steels at normal pressure by optimizing the design of the alloy composition and controlling the lowest melting temperature from a thermodynamic point of view.  相似文献   

16.
不锈钢冶炼及凝固过程氮的控制   总被引:8,自引:1,他引:7  
姜周华  陈兆平  黄宗泽 《钢铁》2005,40(3):32-35,39
总结了氮在不锈钢中有害和有利正反两方面的作用。通过热力学计算和实测数据分析了温度和氮分压对不锈钢熔体中氮溶解度的影响,理论分析了不锈钢熔体吸氮和脱氮的动力学,指出了真空和高压分别是生产超低氮和高氮钢的主要方法。结合以往的研究成果和生产实践提出了生产超低氮铁素体不锈钢和高氮不锈钢的具体工艺技术措施。  相似文献   

17.
通过冶炼实验研究Mn、Cr和Ni对不锈钢凝固模式及铸锭氮含量的影响,探讨影响氮含量的关键因素,并分析合金元素对钢液与铸锭中氮含量影响的相互作用系数的区别.实验结果表明,影响氮含量的因素主要为钢液中氮的溶解度和不锈钢的凝固模式.增加钢液中氮的溶解度、改变凝固模式由F→FA→AF→A时,不锈钢的溶氮能力提高,氮气的溢出量减少,氮含量增加.随Mn含量增加,铸锭中氮含量线性增加,而随Cr和Ni含量增加,氮含量的变化均存在三个特征阶段.分析认为:Mn含量变化不改变凝固模式(FA),相互作用系数ENMn为-0.0286,与钢液中相近;而随Cr和Ni含量增加,凝固模式分别依次经历F→FA→AF→A和FA→AF→A模式,相互作用系数ENCr和ENNi非定值,分别为ENCr=-0.046和-0.011,ENNi=-0.011和0.033.  相似文献   

18.
在常压和真空条件下研究了温度与氮分压对316L不锈钢中氮溶解度的影响,钢中氮的溶解度随着温度的降低而升高,随着氮分压的增大而增大.建立了316L不锈钢氮溶解度热力学计算模型,不同吹氮条件下氮溶解度实测值与热力学模型计算值较吻合.在1773~1873K条件下,生产控氮型316L不锈钢,氮分压要控制在6~28kPa以上;生产中氮型316L不锈钢,氮分压要控制在22~101kPa以上.常压下吹氮10min,钢液含氮量即可超过0.10%.  相似文献   

19.
通过FactSage热力学计算软件和实验室实验研究了在常压和真空条件下温度、氮分压和碳含量对316L不锈钢中氮溶解度的影响.结果表明:钢中氮的溶解度随着温度的降低而升高,随着氮分压的增大而增大,随着钢液碳含量的增加而减少,其中氮分压对钢液氮溶解度的影响最大.不同吹氮条件下氮溶解度实测值与FactSage热力学软件计算值较吻合.生产控氮型316L不锈钢可以在吹氧脱碳阶段实现,生产氮质量分数大于0.10%的中氮型316L不锈钢,只能在氮分压大于30kPa的加料阶段以及破真空后大气微调阶段实现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号