首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Based on the wet chemical analysis, we measured and modeled the kinetics of reactions between fly ash and KOH at various temperatures and water-to-solid mass ratios (W/S). We find that three consecutive rate-limiting processes control reaction progress: (1) dissolution or alteration of the glass phase in the fly ash, (2) classical Fick diffusion through a surface layer, and (3) diffusive transport through a more complex gel structure (interstitial gel). This sequence of processes is independent of W/S (0.35–40), temperature (22–75 °C), and KOH concentration (5–10 M). The relative contribution of each process to the overall reaction progress changes with experimental conditions. Only if and when the third process is rate limiting, a fly ash geopolymer forms and develops mechanical strength (sufficiently low W/S ratio provided). The rate of reaction progress decreases significantly, due to slow transport of reacting species to the surface of the glass particles.  相似文献   

2.
This research studied the improvement of the geopolymerization of bottom ash (BA) by incorporating fly ash (FA) and using flue gas desulfurization gypsum (FGDG) as additive. The BA:FA ratios of 100:0, 75:25, 50:50, 25:75, and 0:100 were used as the blended source materials. The source materials were then replaced with 0%, 5%, 10%, and 15% of FGDG. NaOH, sodium silicate and temperature curing were used to activate the geopolymer. Test results indicated that the increase in FA content in the BA–FA blends improved the strengths of geopolymer mortars owing to the high glassy phase content and high reactivity of FA compared to those of BA. The use of up to 10% of FGDG as additive also significantly increased the strengths of geopolymer. In this case, the compressive strength enhancement was due to the increase in the Al3+ leached from BA in the presence of SO42- and the formation of additional calcium silicate hydrate.  相似文献   

3.
Crystallization behavior of a waste-based glass-ceramic was studied by means of X-ray diffraction analysis, and the surface morphological observations and chemical compositions were evaluated by field emission-scanning electron microscopy and energy dispersive X-ray spectrometry. Applying the mechanical milling method, the glass-ceramic was prepared by using fly ash from a thermal power plant mixed with waste glass cullet. Powder mixtures consisting of waste glass powder (70 wt%) and fly ash (30 wt%) were used to make glass-ceramic. Various heat treatment temperatures [900, 925, 950, 975, 1000 and 1025°C] were used to obtain a glass-ceramic of the optimum crystal phase, mechanical properties and chemical durability. The X-ray diffraction analysis showed that the crystalline phases in the glass-ceramic were diopside [Ca(Mg, Al)(Si, Al)2O6], augite [Ca(Mg, Fe)Si2O6] and wollastonite [CaSiO3]. The crystallization of an acicular phase in the matrix was achieved in the heat treatment temperature range of 1000–1025°C, and the acicular type main crystal phase in the glass-ceramic was wollastonite [CaSiO3]. The heat treatment temperature range [1000–1025°C] also showed much better mechanical properties.  相似文献   

4.
Fly ash is milled for 0, 30 and 90?min and used to study the role of particle size on the kinetics of geopolymer formation. The increase in particle fineness is very prominent in the initial milling stage, and then slows down due to agglomeration effect of finer fraction. The fly ash geopolymerization kinetics and its mechanism is determined using heat of reaction data measured by isothermal conduction calorimeter. The improvement in reaction rate with milling is correlated with the median particle size of the fly ash. The apparent activation energy decreases with size reduction because finer fractions are more prone to alkali activation. Although the kinetics changes with particle fineness, but no alternation is detected in the reaction mechanism, governed by nucleation and growth. The apparent activation energy evaluated by rate method is showing three major steps of geopolymerization such as dissolution, gel formation and restructuring.  相似文献   

5.
Coal fly ash (CF) and synthetic coal fly ash aggregates (SCFAs) were evaluated as low-cost reactive media for the remediation of groundwater contaminated with Zn. The SCFAs were prepared by mixing CF, sodium silicate, and deionized (DI) water. Serial batch kinetic and static tests were conducted on both CF and SCFAs, under various conditions (i.e., pH, initial Zn concentration, reaction time, and solid dosage), using Zn(NO(3))(2).6H(2)O solutions. Serial column tests were also conducted on both CF and SCFAs. The final rather than the initial pH of the solution had a greater effect on the removal of Zn. At pH>7.0, the removal of Zn was due to precipitation, whereas at <7.0, the removal of Zn was due to adsorption onto the reactive media. The removal of Zn increased with increasing dosage of the reactive medium and decreasing initial Zn concentration. The results of the column and batch tests were comparable. Preferential flow paths were observed with CF, but not SCFA. The hydraulic conductivity of CF was more significantly decreased than that of SCFA with increasing dry density of the specimen.  相似文献   

6.
Nucleation and crystal growth in a fly ash derived glass   总被引:3,自引:0,他引:3  
The devitrification behaviour of a fly ash derived glass, examined by differential thermal analysis (DTA), X-ray diffraction and scanning electron microscopy (SEM), is reported and discussed. The crystallized phases were identified as mullite (3Al2O3·2SiO2) and anorthite (CaO·Al2O3·2SiO2). Kinetic parameters for nucleation and crystal growth were estimated from the DTA curves. The temperature of maximum nucleation rate was 790°C and the activation energy for crystal growth E=370 kJ mol–1. The crystal morphology was investigated by SEM and the crystal shape found to be consistent with the morphological index n calculated by DTA. The glass-ceramic obtained from a previously nucleated glass showed a fine-grained texture.  相似文献   

7.
Bo Chen  Zhiwei Luo  Anxian Lu 《Materials Letters》2011,65(23-24):3555-3558
Foam glasses with 50 wt.%, 60 wt.% and 70 wt.% fly ash are prepared using fly ash and flux agent sodium borate with sodium silicate as foaming agent at the temperature of 800 °C. Heat treatment at 800 °C for 1 h of pellets having different fly ash mass percentages results in well-sintered bodies of dark gray color featuring a vitreous aspect with smooth surface. The effect of amount of fly ash on the density, porosity, mechanical strength and microstructure is evaluated. The experimental results show that the foam glass with 70 wt.% fly ash exhibits the excellent comprehensive properties and the suitable sintered temperature is 800 °C.  相似文献   

8.
The use of power-industry wastes as a material for earthen structures depends on its compactibility. It has been confirmed that a fly ash/bottom ash mix compacted several times in Proctor's moulds are not representative. The relationship between dry density of solid particles and water content for re-used waste samples was determined. The re-compaction effect on grain-size distribution, density of solid particles, specific surface and sand equivalent of wastes was investigated. Tests were conducted on fly ash samples compacted by the Standard and Modified Proctor methods. Another aim of the paper was to investigate the influence of cement additions on the compactibility of a fly ash/bottom ash mix. Waste samples in the natural state and with different percentages of cement additions (2, 5 and 10%) were compacted by both impact compaction methods to obtain compactibility curves rhod(w). It was found that cement addition resulted in an increased rhod max value, while wopt decreased. Linear regression relationships for changes in compaction parameters after cement stabilisation are also given.  相似文献   

9.
Dissolution properties of three kinds of fly ash including a Pressurized Fluidized Bed Combustion (PFBC) ash from a novel type of fluidized bed combustion boiler have been studied by leaching in different concentrations of caustic soda solution up to 15 N at 25 °C and 80 °C, stirring for 1 h with liquor/solid ratio = 10. Liquors sampled by a centrifugal separator were chemically analyzed by ICP technique. A blast furnace slag was also studied for reference. Results showed that Ca2+ dissolved relatively large amount in genuine water, but no marked dissolution was detected with increasing NaOH concentrations of the leaching solution. No enhanced dissolution of Al3+ was detected for ordinary fly ashes collected from pulverized coal combustion boilers even with increasing concentrations of solution at 25 °C, whereas enhanced dissolution of Al3+ was observed at 80 °C, when 5 N was reached and more. On the contrary, appreciable increasing was noted on the dissolution of Si4+ with increasing NaOH concentrations even at 25 °C for the ordinary fly ashes and the Si4+ dissolution became enhanced at 80 °C, specifically in 5 N and more.  相似文献   

10.
Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analyses were used to characterise the microstructure and chemical composition of a glass and a glass-ceramic material obtained from incinerator filter fly ash. Although the as-quenched material (vitrified fly ash) was amorphous under the detection limits of XRD, a dispersion of droplets indicating glass-in-glass phase separation was observed. In the glass-ceramic material (crystallised vitrified fly ash), crystals belonging to the pyroxene group and spinels were identified. The microstructure of the glass-ceramic consisted of crystals embedded in an amorphous glassy phase. The crystalline phases contain a higher amount of metallic elements (e.g. Al, Cr, Fe, Ni and Zn and most probably also other heavy metals) than the residual glassy phase. A change of composition of the residual glass phase in the glass-ceramic product, in comparison with the parent glass, is considered to explain, in comparative terms, the higher toxic potential of the glass-ceramic over the glass. The present results demonstrate that for an accurate assessment of the correlation between toxicity, release of hazardous compounds and microstructure, high-resolution characterisation techniques must be employed. In this context, the effect of crystallisation on the chemical durability of the products remains as an important area for further research.  相似文献   

11.
Quartz is widely replaced by fly ash in traditional porcelain composite. Increased strength and stability of the fly ash-mixed composite depends on the quantity and crystallinity of the mullite phase in the fly ash. Our aim in this investigation is to increase the formation of mullite in nanocrystalline form and study the effect of temperature. Quantitative estimation of mullite and residual quartz content were done by X-ray diffraction (XRD) and nanostructure and crystallization were studied using differential thermal analysis (DTA), field effect scanning electron microscopy (FESEM), XRD and Fourier transform infrared (FTIR) spectroscopy. The results show that fly ash sieved through 250 holes/cm2 mesh contain more mullite initially and growth of mullite as well as glass formation was faster in this sample compared to coarse fly ash. The maximum mullite in these samples was formed at 1600°C. Transformation of quartz and cristobalite phases into glassy phase was also faster for smaller particle sizes of fly ash.  相似文献   

12.
赤泥-粉煤灰微晶玻璃晶化行为研究   总被引:9,自引:1,他引:8  
综合利用赤泥和粉煤灰两种废渣制备高附加值的微晶玻璃材料,两种废渣总吃渣量能够达到90wt%以上,降低了生产成本.对不同核化温度、晶化温度对微晶玻璃显微组织的影响进行了研究.结果表明:最佳核化温度由基础玻璃的DTA曲线的吸热峰确定,大约697℃;最佳的晶化温度略高于DTA析晶峰的温度,大约为950℃.  相似文献   

13.
Glass, glass-ceramic and ceramic materials were produced from thermal power plant fly ash without any additives. X-ray diffraction (XRD) analysis revealed the amorphous phase of the glass sample. Augite phase was detected in the glass-ceramic sample, while the enstatite and mullite phases occurred in the ceramic samples. Scanning electron microscopy (SEM) investigations showed that tiny crystallites homogeneously dispersed in the microstructure of the glass-ceramic sample and elongated crystals formed in the ceramic samples. Density values of the obtained samples are comparable to those of the commercially produced glass, glass-ceramic and ceramic samples. Toxicity characteristic leaching procedure (TCLP) results indicated that the produced samples could be taken as non-hazardous materials. Produced samples showed high resistance to alkali solutions in contrast to acidic solutions. Microstructural, physical, chemical and mechanical properties of the produced glass-ceramic samples are better than those of the produced glass and ceramic samples.  相似文献   

14.
This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).  相似文献   

15.
Cement-stabilized fly ash base courses   总被引:4,自引:0,他引:4  
Various demonstration projects have been carried out in The Netherlands with cement-stabilized fly ash as a base course. Usually these courses were made of 100 parts by mass of fly ash; 10 parts by mass of cement; 20 to 30 parts by mass of water. However, the projects were not quite successful since delamination was observed, and long-term strength, after a period of six years of performance, appears to be much smaller than expected on the basis of preliminary laboratory research. A model for pozzolanic reaction of fly ash recently developed by Fraay and Bijen pointed out that the reactivity of fly ash is influenced greatly by the pH value of the pore water. A pH of at least 13 is required to initiate fly ash pozzolanic reaction in a Portland cement environment. Pore water extraction measurements showed that the pH of cement-stabilized fly ash often has a substantially lower value. In this high-volume fly ash application the effect of the acidity of fly ash is much greater than in ordinary concrete with cement replaced by fly ash up to 30%. By addition of NaOH and/or sodium silicate to the mixing water, the pH value can be increased above the ‘threshold’ value.

Tests were carried out with different types of class-F fly ashes and with different NaOH concentrations in the mixing water. The results show an increase in compressive strength of up to 300% depending on the type of fly ash, and a substantial decrease in the rate of water absorption.  相似文献   


16.
The texts presented hereunder are drafts which are submitted for comment, particularly relating to the reference material in section 7.2.2 and 7.4.1. The final recommendations will be drawn up by the committee with respect to the possible comments that should be sent to the Chairman of the committee: Professor Dr.-Ing. K. Wesche, Institute of Building Research, Aachen University of Technology, Schinkelstr. 3, D-5100 Aachen, Germany, before December 31, 1989.  相似文献   

17.
In the paper, the problem of ASR in mortar systems with high contents of alkali and fly ash is studied. The results show that the danger of ASR exists in this system which it is different from ordinary plain cement system because in these systems, serious ASR was accompanied by great expansion of the specimens studied.  相似文献   

18.
Efficiency of fly ash in concrete   总被引:1,自引:0,他引:1  
Earlier efforts towards an understanding of the efficiency of fly ash in concrete has led to the introduction of rational methods. Based on the results available on some of the more recent pulverised fuel ashes, the authors evaluated the efficiency of fly ash in concrete over a wide range of percentage replacements (15–75%). It was clearly shown that the overall efficiency of fly ash cannot be adequately predicted using a single efficiency factor at all percentages of replacements. The overall efficiency factor (k) has been evaluated at all percentages of replacements considering the general efficiency factor (ke) and the percentage efficiency factor (kp). This study resulted in a quantitative assessment of the behaviour of fly ash in concrete, especially for the 28 day compressive strength at different percentages of replacement.  相似文献   

19.
A detailed investigation carried out to ascertain the durability characteristics of fine glass powder modified concretes is reported in this paper. Tests were designed to facilitate comparisons between concretes modified with either glass powder or fly ash at the same cement replacement level. The optimal replacement level of cement by glass powder is determined from strength and hydration tests as 10%. The later age compressive strengths of glass powder and fly ash modified concretes are seen to differ by only 5%. The durability characteristics are ascertained using tests for rapid chloride permeability, alkali–silica reactivity, and moisture transport parameters. The chloride penetrability values indicate some amount of pore refinement. The potential of glass powder to reduce the expansion due to alkali–silica reaction is established from tests conducted in accordance with ASTM C 1260, but fly ash is found to perform better at similar replacement levels. Glass powder–fly ash blends that make up a 20% cement replacement level are found to be as efficient as 20% fly ash in reducing expansion. The control concrete is seen to exhibit the lowest overall moisture intake after 14 days of curing, and fly ash concrete the highest, with the glass powder concrete in between. The trend is reversed at later ages, demonstrating that both the replacement materials contribute to improved durability characteristics. The sorptivity and moisture diffusion coefficient values calculated from the moisture intake-time data also demonstrate a similar trend. These studies show that fine glass powder has the potential to improve the durability of concretes.  相似文献   

20.
The permeability of fly ash concrete   总被引:1,自引:0,他引:1  
Oxygen permeability tests were carried out on plain ordinary Portland cement (OPC) and fly ash concretes at three nominal strength grades. Prior to testing the concretes were subjected to a wide range of curing and exposure conditions. The results emphasize the importance of adequate curing to achieve concrete of low permeability, especially when the ambient relative humidity is low. In addition, the results demonstrate the considerable benefit that can be achieved by the use of fly ash in concrete. Even under conditions of poor curing, fly ash concrete is significantly less permeable than equal-grade OPC concrete, the differences being more marked for higher-grade concretes. Attempts were made to correlate strength parameters with permeability but it is concluded that neither the strength at the end of curing nor the 28-day strength provides a reliable indicator of concrete permeability. A reliable correlation was established between the water to total cementitious material ratio [w/(c+f)] and the permeability of concretes subjected to a given curing and exposure regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号