首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure and magnetic properties of the Fe/N/Fe multi-layers were obtained by means of self-consistent band structure calculations employing the Linear Muffin-Tin Orbital method (LMTO). Calculations were carried out for several lattice parameters in order to obtain ground-state properties such as equilibrium lattice parameters and the critical pressure of these multi-layers. The analysis of the density of states at equilibrium volume gives a good understanding of the electronic and magnetic properties of these multi-layers, showing remarkable differences from the bulk properties of iron-based nitrides. Ferromagnetic calculations show that the Fe/N/Fe multi-layers, at equilibrium volume, have a ferrimagnetic order of 1.45 μB and −0.22 μB as the magnetic moments at the two non-equivalent iron sites. At nitrogen sites a moment magnetic of −0.16 μB was found, which is opposite to the very small values found in bulk iron nitrides. The magnetic moment and hyperfine field (the Fermi Contact) show a strong dependence with the lattice spacing with a collapse of the magnetic moments at certain critical lattice spacing.  相似文献   

2.
对落叶松植物多酚进行胺甲基化改性,将其包覆于磁性Fe_3O_4颗粒表面,制备了功能化Fe_3O_4@胺甲基改性植物多酚(Fe_3O_4@A-PP),用于能源微藻-普通小球藻的收集。采用FTIR、磁滞回线、zeta电位的方法对Fe_3O_4@A-PP磁性材料的物理化学性质进行了测定,并研究了投加方式、包覆比例对Fe_3O_4@A-PP收集微藻效能的影响。FTIR显示Fe_3O_4@A-PP具有来自A-PP的C—H、N—H和—OH等官能团。A-PP包覆对Fe_3O_4的磁性无改变。与A-PP的zeta电位相比,Fe_3O_4@A-PP的zeta电位增大了5~10mV。Fe_3O_4@A-PP中两者配比影响微藻的收集效率,当配比为20/200时,收集率达到最大值84.2%。采用Fe_3O_4@A-PP可以将磁絮凝收集时间从A-PP的30min缩短至0.5 min以内。显微图像显示,与A-PP絮凝后絮体呈片状松散团聚的状态相比,Fe_3O_4@A-PP收集的微藻细胞呈链状被Fe_3O_4包裹或团簇在其四周。吸附电中和在Fe_3O_4@A-PP磁絮凝收集微藻的机理中发挥重要作用。  相似文献   

3.
陶志阔  张荣  陈琳  修向前  谢自力  郑有炓 《功能材料》2012,43(19):2647-2650
应用金属有机物化学气相沉积(MOCVD)方法,在c轴取向的GaN上生长出Fe颗粒薄膜以及Fe3N薄膜。应用XRD、AFM、XPS以及SQUID等技术对薄膜的结构、表面形貌以及磁学性能等性质进行了分析,结果表明六方结构的GaN上生长的Fe为立方结构,且以Fe(110)//GaN(0002)晶面以及Fe[001]//GaN[11■0]轴的方式存在,而生长的Fe3N为六方结构,且以Fe3N(0002)//GaN(0002)晶面以及Fe3N[11■0]//GaN[1ī00]轴的方式存在。同时,磁学分析表明,平行于薄膜方向为易磁化方向,垂直于薄膜方向为难磁化方向。  相似文献   

4.
以高温煤焦油沥青为原料,以体积比7∶3的浓硫酸和浓硝酸混合酸为氧化剂,制备水性中间相沥青;采用溶胶-凝胶法先形成碳基溶胶,加入FeCl3后进一步形成复合Fe/C凝胶;凝胶经醇水交换、常温干燥和900℃炭化制备出Fe/C复合磁性纳米炭粉。利用FT-IR、XRD、TG和TEM等对水性中间相沥青、磁性纳米炭原粉以及磁性纳米炭粉进行表征。结果表明:采用溶胶-凝胶和常温干燥的方法可以制备出粒度均匀、形状近似于椭圆形的Fe/C复合磁性纳米炭;其磁性纳米炭粉的平均粒径约5 nm,以聚集成粒度为20 nm~30 nm的团聚体形式存在。磁性纳米炭粉中的碳以无定型结构的形式存在,Fe元素以α-Fe、Fe2O3和Fe3C的形式存在,Fe/C复合磁性纳米炭粉具有软磁性和较高的磁响应性。  相似文献   

5.
静电纺丝法制备PAN/Fe3O4磁性纳米纤维   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备纳米四氧化三铁,选用曲拉通X-100为分散剂,利用静电纺丝法制备PAN/Fe3O4磁性纳米复合材料。X射线衍射仪(XRD)验证了四氧化三铁在复合纳米纤维中的存在。同时使用扫描电镜(SEM)和透射电镜(TEM)对复合纳米纤维的微观形貌和Fe3O4在纤维中的分布进行了观察,利用热重(TGA)对纳米复合材料的热稳定性进行分析;通过磁性实验分析了纳米复合材料的磁性性能。结果表明,所制备PAN/Fe3O4磁性纳米纤维成型良好,且Fe3O4磁性颗粒在纤维中分散均匀,其与PAN是物理复合。纳米复合材料具有一定磁性,并可由磁性颗粒的加入量进行控制。  相似文献   

6.
利用差热(扫描)分析、X射线、透射电镜、振动样品磁强计研究了添加Co、Dy对Fe3B/Nd2Fe14B 纳米复合永磁材料的微结构和性能的影响.结果表明:添加适当的微量元素可以提高Nd4.5Fe77B18.5纳米复合永磁材料的内禀磁性,改进微结构,从而提高材料的永磁性能.在Nd4.5Fe77B18.5中添加1%-3%(原子分数)的Co、Dy明显地降低材料的晶化温度和最佳热处理温度、提高了2:14:1相的居里温度、改善了纳米复合永磁材料的微观结构,从而提高材料的永磁性能.与Nd4.5Fe77B18.5相比,Nd3.5Fe74Co3DylBl8.5的永磁性能为:Br=1.06T,jHc=328kA/m,(BH)max=108.9kJ/m^3,分别提高了26%,17%和104%.  相似文献   

7.
The results of investigation of the magnetic and magnetooptical properties of two-layer Fe/Ti, Zr, Pt and three-layer Fe/Ti, Zr, Pt/Fe thin-film magnetic structures are presented. The nonmagnetic layer exhibits a strong effect on the magnetic properties of samples. The magnitude of the saturation field of three-layer magnetic structures oscillates as a function of thickness of the nonmagnetic layer; the period of this oscillation depends on the thickness of the Fe layer. The Pt layer strongly affects the spectral dependences of the equatorial Kerr effect in the structures investigated.  相似文献   

8.
Fe/Fe3O4 nano-cubes and nano-octahedrons have been successfully synthesized by employing a facile solvothermal method at 180?°C in the presence of ethylene glycol (EG). Well-defined assembly of uniform Fe/Fe3O4 with an average size of 400?nm could be obtained without a size-selection process. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the structure and morphology of the products. The magnetic properties of Fe/Fe3O4 nanocomposite were measured by using a vibrating sample magnetometer. The result of magnetic characterization reveals that the magnetic polyhedrons exhibit a ferromagnetic behavior and possess high saturation magnetization. It is expected that these magnetic polyhedron with uniform size would have potential applications in recording media and electrode materials.  相似文献   

9.
Journal of Materials Science: Materials in Electronics - This study applied screen printed graphite electrode (SPGE) modified with the Fe2MoO4 magnetic nanocomposite for simultaneously determining...  相似文献   

10.
Wang  Zhen  Wu  Chenwei  Zhang  Zhe  Chen  Yi  Deng  Wenyang  Chen  Wenqing 《Journal of Materials Science》2021,56(28):15684-15697
Journal of Materials Science - Fe/Co metal–organic frameworks (Fe/Co-MOFs) were synthesized by a solvothermal method using terephthalic acid (BDC) and N,N-dimethylformamide (DMF), and the...  相似文献   

11.
《Thin solid films》2006,515(2):712-715
We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.  相似文献   

12.
Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites   总被引:2,自引:0,他引:2  
Magnetic silica nanocomposites (magnetic nanoparticles core coated by silica shell) have the wide promising applications in the biomedical field and usually been prepared based on the famous St?ber process. However, the flocculation of Fe3O4 nanoparticles easily occurs during the silica coating, which limits the amount of magnetic silica particles produced in the St?ber process. In this paper, PMMA/Fe3O4 nanoparticles were used in the St?ber process instead of the "nude" Fe3O4 nanoparticles. And coating Fe3O4 with PMMA polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. The results show that the critical concentration of magnetic nanoparticles can increase from 12 mg/L for "nude" Fe3O4 nanoparticles to 3 g/L for PMMA/Fe3O4 nanoparticles during the St?ber process. And before the deposition of silica shell, the surface of PMMA/FeO4 nanoparticles had to be further modified by hydrolyzing them in CH3OH/NH3 x H2O mixture solution, which provides the carboxyl groups on their surface to react further with the silanol groups of silicic acid.  相似文献   

13.
Fe particles were coated with ZrO2 nanopowders using mechanical milling method combined with high temperature recovery annealing process. The effect of milling time on particle size, phase structure and magnetic properties of the core-shell structure powders was studied. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) revealed that the surfaces of the composite powders comprised thin and uniform layers of ZrO2 insulating powders after milling. Also, the SEM images showed the morphology of micro-cellular structured compacts with cell-body of Fe particles and indicated that Fe particles were well separated and insulated by thin ZrO2 layers. The Fe/ZrO2 soft magnetic composites displayed much higher electrical resistivity, lower core loss than that of the pure Fe powder cores without ZrO2 layers at medium and high frequencies. The preparation method of ZrO2-insulated Fe powders provides a promising method to reduce the core loss and improve the magnetic properties for soft magnetic composite materials.  相似文献   

14.
研究非晶Tb/Fe/Dy(样品A)和Fe/Tb/Fe/Dy(样品B)纳米多层膜超磁致伸缩性能和磁性能.磁滞回线表明样品A的垂直磁各向异性而样品B有面向磁各向异性,样品B比样品A更好的磁性能.样品B有很好的低场超磁致伸缩性能,在外磁场为0.12T情况下样品B的超磁致伸缩性能是样品A的五倍,即从16ppm变为82ppm.  相似文献   

15.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

16.
The structural and magnetic properties of the evaporated Fe/V multilayers with a fixed V-layer thickness (tV = 1.5 nm) and variable Fe layer thicknesses (0.75 nm < or = tFe < or = 6 nm) have been studied by X-ray reflectivity and high-angle X-ray diffraction, conversion-electron M?ssbauer spectrometry, and vibrating sample magnetometry. The results show that multilayers are formed with a broad Fe/V interface and pure crystalline bcc-Fe layers in the center of the individual subsystems. The Fe spin orientation is aligned in the film plane in the individual centers as well in the interfacial regions. The interfacial anisotropy constant Ks was estimated to be equal to 0.04 mJ/m2. This parallel magnetic anisotropy is discussed in terms of reduced symmetry effects on the hybridized 3d states.  相似文献   

17.
王海成  汪凡曦  于广华 《功能材料》2012,43(8):1034-1037
利用水解共沉淀法制备了Fe3O4纳米颗粒,研究了温度和pH值对Fe3O4纳米颗粒粒径、形貌的影响关系。研究结果表明,反应温度从30℃升高到90℃,Fe3O4颗粒的粒径从6~8nm增大到10~12nm;同时,Fe3O4颗粒的饱和磁矩也随着Fe3O4颗粒粒径的增加而升高。溶液pH值会影响Fe3O4纳米颗粒的形状,高pH值易使合成的Fe3O4纳米颗粒为四方形,随着pH值的降低,Fe3O4纳米颗粒向球形转变。Fe3O4纳米颗粒的粒径和形状的可控性为进一步合成、调控Fe3O4电磁功能复合材料奠定了良好基础。  相似文献   

18.
《Materials Letters》2007,61(4-5):983-986
The influence of a high magnetic field on the alignment behavior of primary Al3Fe phase in Al–Fe alloy was investigated. It was found that the primary Al3Fe phase with plate-like morphology was gathered at the bottom of the sample without the high magnetic field. However, they aligned perpendicularly to the magnetic field direction and their homogeneous distribution throughout the sample was achieved when the high magnetic field was imposed. The results of X-ray diffraction (XRD) showed that the paramagnetic Al3Fe phase was magnetized to align to a preferred direction <543> due to crystal magnetic anisotropy in the high magnetic field up to 12 T.  相似文献   

19.
We present a systematic study on the preparation, characteration and potential application of Fe3O4 and Fe3O4@SiO2 nanoparticles. Fe3O4 nanoparticles of controllable diameters were successfully synthesized by solvothermal system with tuning pH. The magnetic properties of nanoparticles were measured by vibration sample magnetometer. Fe3O4@ SiO2 nanoparticles were obtained via classic St?ber process. Streptavidin coated Fe3O4@SiO2 nanoparticles were prepared by covalent interaction. The quantity of streptavidin bound to nanoparticles was determined by UV-Vis spectrometer. To evaluate the binding efficiency and capacity of nucleic acid on nanoparticles, the capture of biotinylated oligonucleotide on streptavidin coated Fe3O4@SiO2 nanoparticles at different concentration was estimated by fluorescence detection. Both Fe3O4 and Fe3O4@SiO2 nanoparticles exhibited well crystallization and magnetic properties. The maximal amount of streptavidin immobilized onto the Fe3O4@SiO2 nanoparticles was 29.3 microg/mg. The saturation ratio of biotinylated oligonucleotides captured on streptavidin coated Fe3O4@SiO2 nanoparticles was 5 microM/mg within 20 minutes, indicating that FeO4@SiO2 nanoparticles immobilized by streptavidin were excellent carriers in nucleic acid analysis due to their convenient magnetic-separation property. Therefore, the synthesized Fe3O4 and Fe3O4@SiO2 nanoparticles with controllable size and high magnetic saturation have shown great application potentials in nucleic acid research.  相似文献   

20.
The magnetic properties of Co/Fe/Ni thin-film structures grown by magnetron sputtering have been studied using magnetooptical techniques. The results of x-ray diffraction measurements showed that all samples possessed a nanocrystalline structure. The magnetization curves and hysteresis loops were measured using the equatorial Kerr effect for two orientations of the external magnetic field. It is established that the Co/Fe/Ni thinfilm structures exhibit a planar magnetic anisotropy. The magnetic behavior of each layer in the initial inhomogeneous Co/Fe/Ni structure is substantially influenced by stray fields of the adjacent layers. This circumstance accounts for the complex shapes of hysteresis loops. The annealing in vacuum at T = 500°C renders Co/Fe/Ni thin-film structures magnetically hard compared to the initial state. The experimental results are explained by certain features of the microstructure of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号