首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Letters》2003,57(22-23):3554-3559
The uptake of various ions by amorphous and crystalline BaAl2Si2O8 was investigated. The BaAl2Si2O8 samples were prepared by solid-state reaction of kaolin ground with BaCO3 for periods from 1 to 24 h followed by firing at temperatures of 800–1200 °C for 24 h. Uptake experiments were performed at room temperature (25 °C) using a solid/solution ratio of 0.1 g/50 ml, with a cation concentration of 10−3 M and reaction time of 24 h. The cations used for the uptake experiments were alkaline earth ions (Mg2+, Ca2+ and Sr2+) and transition metal ions (Ni2+, Co2+, Cu2+ and Zn2+). The uptake of alkaline earth ions was low in all the samples while the transition metal ion uptakes were higher in the amorphous BaAl2Si2O8 sample than crystalline BaAl2Si2O8 samples. The high uptake of transition metal ions by the amorphous sample was further enhanced by prolonging the grinding time. Since the amorphous sample appears from the 29Si and 27Al NMR spectra to have a similar local structure to crystalline hexacelsian (double-layered structure consisted of alternatively corner shared AlO4 and SiO4 tetrahedra), the uptake of transition metal ions is suggested to occur by release of interlayer Ba ions in the vicinity of edge sites with the adsorption of transition metal ions from the solution.  相似文献   

2.
Glasses having a chemical composition based on combeite [Na2Ca2Si3O9]–fluoroapatite [Ca5(PO4)3F] and forsterite [Mg2SiO4] system were crystallized through controlled heat-treatment. Two forms of sodium calcium silicate e.g. combeite Na2Ca2Si3O9 and pectolite Na2CaSi3O8, were formed together with diopside (CaMgSi2O6) and monticellite (CaMgSiO4) in addition to fluoroapatite (Ca5(PO4)3F) phases by thermal treatment of the glasses. Selected glass–ceramics were exposed to a simulated body fluid solution (SBF) which is close to human plasma for 3 weeks. Energy dispersive X-ray analysis (EDX) and inductive coupled plasma (ICP) analysis confirmed the formation of an apatite layer which indicate bioactivity in the all crystallized sample. A decreasing of surface bioactivity with increasing Mg2SiO4/Na2Ca2Si3O9 replacement was observed as indicated by the decrease in the amount of apatite layer on the surface of the crystallized specimens. The Vicker’s microhardness of the studied glass–ceramic materials are between 5,047 and 6,781 MPa.  相似文献   

3.
Newsprint recycling is responsible for significant volumes of secondary waste material for which further reprocessing and market development would be beneficial. In response to this problem, a layer lattice, ion exchange material, Al-substituted 11 Å tobermorite, has been synthesised from newsprint recycling residue comprising gehlenite (Ca2Al2SiO7), akermanite (Ca2MgSi2O7), β-dicalcium silicate (Ca2SiO4) and anorthite (CaAl2Si2O8) under hydrothermal conditions at 100 °C in the presence of NaOH. The hydrogarnet phase, katoite (Ca3Al2SiO12H8), was also formed. Similar treatment regimes in the presence of LiOH and KOH did not yield significant quantities of Al-substituted 11 Å tobermorite. A batch sorption study confirmed that the Al-substituted 11 Å tobermorite-bearing product was effective in the exclusion of Cd2+, Pb2+ and Zn2+ from acidified aqueous media. The potential to enhance the yield of Al-substituted 11 Å tobermorite relative to that of katoite and thus optimise the ion exchange efficiency of the product is discussed with respect to its application to heavy metal-contaminated wastewater treatment.  相似文献   

4.
Rare earth long afterglow phosphors Sr2MgSi2O7:Eu2+,Dy3+ was synthesized by a modified solid-state reaction using H3BO3 as auxiliary reagents. In order to promote the emission properties of Sr2MgSi2O7:Eu2+,Dy3+, samples of Sr2MgSi2O7:Eu2+,Dy3+ were prepared and the effect of manufacturing elements including the concentration of H3BO3 and environmental factor of calcining temperature, concentration of Eu2+ and Dy3+ ions, external environmental factors of applications such as fiber-forming polymer as well as the addition of Ca2+ ion on its emission property were investigated through evaluating their emission spectra. The results showed that the molar ratio of the Eu2+ ions and Dy3+ ions, the amount of doping H3BO3, calcining temperature and fiber-forming polymer had little effect on the position of the emission peak and the shape in the luminescence, but greatly influenced the emission intensity of luminescent materials. The effect of Ca2+ ion doping was further studied. Ca2+ influenced not only the intensity but also the wavelength of emission and spectra of the emission peak shifted to longer wavelength as the concentration of Ca2+ increased.  相似文献   

5.
A novel Ca5MgSi3O12: Eu2+, Mn2+ phosphor has been prepared by a sol-gel method. X-ray diffractometer, spectrofluorometer were used to characterize structural and optical properties of the samples. The results indicate that Ca5MgSi3O12: Eu2+, Mn2+ phosphors show two emission bands excited by ultraviolet light. Blue (around 450 nm) and green (around 502 nm) emissions originate from Mn2+ and Eu2+, respectively. With appropriate tuning the concentration ratios of Eu2+ to Mn2+, Ca5MgSi3O12: Eu2+, Mn2+ phosphors exhibit different hues and relative color temperatures, which have potential to act as a single-phase phosphor for white-light emitting diode.  相似文献   

6.

Calcium silicates are very stable and good hosts for luminescent materials. These calcium silicates are synthesized using cost-effective agro-food wastes such as rice husk ash and eggshell powder along with doping of samarium oxide [Ca3?xSi2O7:xSm3+(x(%)?=?0.25, 0.50, 0.75, and 1.00)] via solid-state reaction method. X-ray diffraction confirms that the Ca3Si2O7 phase co-exists with the monoclinic-Ca2SiO4 phase. An increase in doping concentration of Sm3+ enhances the Ca2SiO4 phase content. Two types of morphology can be seen in the SEM micrographs confirming the presence of two phases. Photoluminescence emission spectra contain peaks in the visible region. Characteristic emission peaks of Sm3+ are present along with strong peaks due to the titanium ions present in agro-food wastes. Commission International de'Eclairage (CIE) co-ordinates correspond to the green region, which is significantly different from the CIE co-ordinates of Sm3+ doped samples derived from mineral oxides. This study presents an alternate use of agro-food wastes for synthesizing visible light-emitting phosphors and presents a mechanism for stabilizing Ca2SiO4 in waste-derived samples.

  相似文献   

7.
The compounds crystallizing in the LiOH–TiO2–SiO2–H2O system at 500°C and 0.1 GPa are Li2SiO3, Li2Si2O5, and Li2SiO3. At a TiO2 : SiO2 molar ratio of 6.4 : 1, the dominant phase is Li2TiSiO5. The crystallization fields of Si-containing phases at TiO2 : SiO2 ratios from 1 : 1 to 1 : 4 are (in order of increasing LiOH concentration) SiO2 (quartz), Li2Ti[5]Si[4]O5 + Li2Si2O5, and Li2Ti[5]Si[4]O5 + Li2Si2O5 + Li2Si[4]O3. The observed crystallization behaviors of Li2TiSiO5, Li2Si2O5, and Li2SiO3 are interpreted in terms of the matrix assembly of the structure from cyclic subpolyhedral structural components.  相似文献   

8.
Recently, forsterite (Mg2SiO4) has been introduced as a possible bioceramics due to its good biocompatibility. It has a better bending strength and fracture toughness than those of commercially available hydroxyapatite ceramics. In this study, nanostructure effects on the bioactivity of forsterite powder were investigated. For synthesizing forsterite powder, talc and magnesium carbonate powders were mechanically activated for various times. Then, the prepared powders were mixed with ammonium chloride (as a catalyst) and annealed at different temperatures. For bioactivity evaluation, the obtained forsterite powders were pressed in the form of tablets and then immersed in simulated body fluid (SBF). The results showed that nanostructure forsterite powder with crystallite size of about 31 nm, unlike micrometer-sized forsterite, possessed apatite formation ability and its bioactivity, biocompatibility, and good mechanical properties make it a suitable candidate for load bearing application in bone implant materials and open new horizons in tissue engineering.  相似文献   

9.
Bioceramics have been developed from bioinert to bioactive or biodegradable materials in the past few decades. However, at present, traditional bioceramics are still mainly used in bone tissue regeneration and dental restoration. In this work, a new generation of “black bioceramics,” extending the applications from tissue regeneration to disease therapy, is presented. Black bioceramics, through magnesium thermal reduction of traditional white ceramics, including silicate-based (e.g., CaSiO3, MgSiO3) and phosphate-based (e.g., Ca3(PO4)2, Ca5(PO4)3(OH)), are successfully synthesized. Due to the presence of oxygen vacancies and structural defects, the black bioceramics possess photothermal functionality while maintaining their initial high bioactivity and regenerative capacity. These black bioceramics show excellent photothermal antitumor effects for both skin and bone tumors. At the same time, they have significantly improved bioactivity for skin/bone tissue repair in vitro and in vivo. These fascinating properties award the black bioceramics with profound applications in both tumor therapy and tissue regeneration, which should greatly promote the scientific relevance and clinical application of bioceramics, representing a promising new direction of cell-instructive biomaterials.  相似文献   

10.
《Optical Materials》2005,27(1):51-55
Long lasting alkaline earth silicates, Ca2MgSi2O7:Eu,Dy,Nd was prepared under a reduction atmosphere through solid state reaction. The obtained phosphor was characterized by means of X-ray diffraction (XRD) and photoluminescence spectrum (PLS). The crystal structure of Ca2MgSi2O7:Eu,Dy,Nd phosphor was refined by Rietveld analysis. The obtained Ca2MgSi2O7:Eu,Dy,Nd phosphor showed a yellow–green emission peaking at 518 nm, which is ascribed to the luminescent emission of the Eu2+ that occupied the octa-coordinated Ca2+ sites in the Ca2MgSi2O7 host. The electron affinity (ea) value for Eu2+ in [EuO8] was calculated to 1.9 eV. The decay profile and the emission spectrum indicated that when the value of Dy/Eu is increasing, there is a concentration quenching of Eu2+.  相似文献   

11.
Eu2+-activated Ca2Y2Si2O9 phosphors with different Eu2+ concentrations have been prepared by a solid-state reaction method at high temperature and their photoluminescence (PL) properties were investigated. Photoluminescence results show that Eu2+-doped Ca2Y2Si2O9 can be efficiently excited by UV–visible light from 300 to 425 nm. Ca2Y2Si2O9: Eu2+ exhibits broad band emission in the wavelength range of 425–700 nm, due to the 4f65d1  4f75d0 transition of the Eu2+ ions located at two different sites ((Ca/Y)1 and (Ca/Y)2) in Ca2Y2Si2O9. The effect of the Eu2+ concentration in Ca2Y2Si2O9 on the PL properties was investigated in detail. The results showed that the relative PL intensity reaches a maximum at 1 mol% of Eu2+, and a red-shift of the emission bands from these two different sites was observed with increasing Eu2+ concentration. Also there exists energy transfer between these two Eu2+ sites. The potential applications of Ca2Y2Si2O9: Eu2+ have been pointed out.  相似文献   

12.
New phosphors M2(Mg, Zn)Si2O7:Mn2+ (M = Ca, Sr, Ba) were prepared by sol-gel process, and their luminescent properties in ultraviolet and vacuum ultraviolet region were investigated. The results showed that the (Ca, Sr, Ba)2MgSi2O7:Mn2+ samples did not emit any visible light; the Sr2ZnSi2O7:Mn2+ and Ca2ZnSi2O7:Mn2+ samples showed green light. The Ba2ZnSi2O7:Mn2+ sample mainly showed green light under 254 nm excitation and red light under 147 nm excitation. The different emission was due to the Mn2+ ions occupied different sites, which were excited selectively. Among the three phosphors Sr2ZnSi2O7:Mn2+ showed the highest green emission intensity, and its decay time was shorter than that of Zn2SiO4:Mn2+ under 147 nm excitation.  相似文献   

13.
Healing of segmental bone defects remain a difficult problem in orthopedic and trauma surgery. One reason for this difficulty is the limited availability of bone material to fill the defect and promote bone growth. Hydroxyapatite (HA) is a synthetic biomaterial, which is chemically similar to the mineral component of bones and hard tissues in mammals and, therefore, it can be used as a filler to replace damaged bone or as a coating on implants to promote bone in-growth into prosthetic implants when used in orthopedic, dental, and maxillofacial applications. HA is a stoichiometric material with a chemical composition of Ca10(PO4)6(OH)2, while a mineral component of bone is a non-stoichiometric HA with trace amounts of ions such as Na+, Zn2+, Mg2+, K+, Si2+, Ba2+, F?, CO3 2?, etc. This review looks at the progress being made to extract HA and its precursors containing trace amount of beneficial ions from biological resources like animal bones, eggshells, wood, algae, etc. Properties, such as particle size, morphology, stoichiometry, thermal stability, and the presence of trace ions are studied with respect to the starting material and recovery method used. This review also highlights the importance of extracting HA from natural resources and gives future directions to the researcher so that HA extracted from biological resources can be used clinically as a valuable biomaterial.  相似文献   

14.
Ce3+/Mn2+ singly doped and codoped Mg2Al4Si5O18 phosphors were synthesized by a solid state reaction. The phase, luminescent properties and thermal stability of the synthesized phosphors were investigated. Ce3+ and Mn2+ singly doped Mg2Al4Si5O18 phosphors show emission bands locating in blue and yellow–red regions, respectively. In Ce3+ and Mn2+ codoped Mg2Al4Si5O18, tunable luminescence was obtained because of the energy transfer from Ce3+ to Mn2+. In Mg2Al4Si5O18:Ce3+/Mn2+ phosphors with a fixed Ce3+ concentration, energy transfer efficiency increases with the increasing Mn2+ concentration, which is confirmed by the continually decreasing intensity and shortening decay time of Ce3+ emission. Moreover, the luminescent properties and thermal stability provide a great significance on the applications in the field of light emitting diodes.  相似文献   

15.
Gas-tight seals based on glasses suitable for joining of materials with high thermal expansion coefficients are for example required for solid-oxide fuel cells. If these seals are to be used at high temperatures, they can only be fabricated from glasses which enable the crystallization of phases with high thermal expansion coefficients. This paper reports on some components from systems suitable for high thermal expansion seals: binary calcium silicates, CaSiO3, Ca3Si2O7 and Ca2SiO4 zinc silicates, Zn2SiO4, ternary silicates of BaO, CaO and ZnO, BaCa2Si3O9, Ca2ZnSi2O7, and one quaternary silicate, Ba2CaZn2Si6O17, studied by high-temperature X-ray diffraction. Only CaSiO3, Ca3Si2O7 and BaCa2Si3O9 exhibit thermal expansion coefficients in the range suitable for high thermal expansion seals of 11.2-11.8 × 10−6 K−1 (100-800 °C). The thermal expansions strongly depend on the respective crystallographic axis. The coefficient of thermal expansion of a sealing glass is not only affected by the thermal expansions of the crystalline phases, but also by that of the residual glassy phase as well as by the elastic properties. The phase formation should carefully be controlled also with respect to aging.  相似文献   

16.
A novel red emitting phosphor, Eu3+-doped Na2Ca4Mg2Si4O15, was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Na2Ca4Mg2Si4O15:Eu3+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated a narrow size-distribution of about 300 nm for the particles with spherical shape. Upon excitation with vacuum ultraviolet (VUV) and near UV light, the phosphor showed strong red-emission lines at around 611 and 617 nm, respectively, corresponding to the forced electric dipole 5D0  7F2 transition of Eu3+, and the highest PL intensity at 617 nm was found at a content of about 8 mol% Eu3+. The optical properties study suggests that it is a potential candidate for plasma display panels (PDPs) application.  相似文献   

17.
A series of polycrystalline Na4Ca4(Si6O18):Eu3+ orange emitting phosphors were synthesized by a conventional high-temperature solid-state reaction. The phase formation was confirmed by X-ray power diffraction analysis. The excitation spectra show a strong host absorption indicating an efficient energy transfer process from O2? to Eu3+ ions. Upon NUV radiation, the phosphors showed strong red emission around 610 nm (5D0 → 7F2) and orange emission around 591 nm (5D0 → 7F1), but the 5D1,2,3 emission nearly can not be seen. Compared with the luminescence properties of Li+, Na+, and K+ co-doped samples, we deduced that Na+ ions probably prefer to dope into the intrinsic Na vacancies rather than Ca2+ ions vacancies in Na4Ca4(Si6O18) crystal. Thermal stability properties, quantum efficiency and chromaticity coordinates of the phosphors have been investigated for the potential application in white LEDs.  相似文献   

18.
Titanium (Ti) is widely used for load‐bearing bio‐implants, however, it is bio‐inert and exhibits poor osteo‐inductive properties. Calcium and magnesium ions are considered to be involved in bone metabolism and play a physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this study, a facile synthesis approach to the in situ construction of a nanostructure enriched with Ca2+ and Mg2+ on the surface of titanium foil is proposed by inserting Ca2+ and Mg2+ into the interlayers of sodium titanate nanostructures through an ion‐substitution process. The characteriz 0.67, and 0.73 nm ation results validate that cations can be inserted into the interlayer regions of the layered nanostructure without any obvious change of morphology. The cation content is positively correlated to the concentration of the solutions employed. The biological assessments indicate that the type and the amount of cations in the titanate nanostructure can alter the bioactivity of titanium implants. Compared with a Na+ filled titanate nanostructure, the incorporation of divalent ions (Mg2+, Ca2+) can effectively enhance protein adsorption, and thus also enhance the adhesion and differentiation ability of rat bone‐marrow stem cells (rBMSCs). The Mg2+/Ca2+‐titanate nanostructure is a promising implantable material that will be widely applicable in artificial bones, joints, and dental implants.  相似文献   

19.
A series of novel red-emitting Na2Ca3???x Si2O8:xEu3+ phosphors were synthesized by solid state reactions. The phosphors can strongly absorb 395 nm light, and show red emission with a good color purity. The excitation and emission spectra properties of Na2Ca3Si2O8:Eu3+ were characterized. Na2Ca3Si2O8:Eu3+ with self-compensated and alkali metal ions charge compensated approaches (2Ca2+→Eu3+ + M+, M?=?Li+, Na+, K+) have investigated, which found that the red emission of luminescent intensity can be greatly enhanced, and shows superior luminescent property to the commercial Y203S:Eu3+. The present work implies that the efficient charge compensated phosphors are promising candidates as red-emitting phosphor for w-LEDs.  相似文献   

20.
The sintering and devitrification behavior of glass-powder compacts with four compositions, Ca2Mg0.5Al1.0Si1.5O7, Ca2Mg0.6Al0.8Si1.6O7, Ca2Mg0.7Al0.6Si1.7O7, and Ca2Mg0.8Al0.4Si1.8O7, corresponding to akermanite–gehlenite ratios (mol%) of 50/50, 60/40, 70/30, and 80/20 were investigated. Glass frits were prepared by the classical melt quenching technique in water. The structure of the glasses was investigated using FTIR and NMR, whereas the sintering behavior was studied by DTA and HSM. Sintering precedes crystallization only in Ca2Mg0.5Al1.0Si1.5O7 glass while in the remaining glass compositions maximum densification was achieved slight after the onset of crystallization. However, the ratios of final area/initial area (A/A 0) of the glass-powder compact ranging from 0.63 to 0.66 imply towards good densification levels (95–98 %) achieved in the investigated glasses. Qualitative and quantitative XRD analyzes were performed in glass-powder compacts heat treated at 900 and 1000 °C. Merwinite was found to crystallize first followed by decomposition at higher temperatures to form akermanite-like phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号