首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用基于密度泛函理论(DFT)的第一性原理对光伏材料Cu2ZnSnS4 (CZTS)掺Mg进行了研究。通过建立Mg取代CZTS中Cu、Zn和Sn的点缺陷结构, 计算Mg掺杂缺陷的生成能及对CZTS电子结构的影响。计算结果表明掺Mg不引入深能级缺陷也不改变材料的禁带宽度; 并且富Sn条件更有利于Mg取代Cu形成施主缺陷, 使p型转变为n型。本研究可为CZTS太阳能电池掺Mg的应用研究提供理论基础。  相似文献   

2.
Li ZQ  Shi JH  Liu QQ  Chen YW  Sun Z  Yang Z  Huang SM 《Nanotechnology》2011,22(26):265615
We present a fast and simple protocol for large-scale preparation of quaternary Cu(2)ZnSnSe(4) (CZTSe), as well as CZTSe/Cu(2)ZnSnS(4) (CZTS) core/shell nanowires using CuSe nanowire bundles as self-sacrificial templates. CuSe nanowire bundles were synthesized by reacting Cu(2 - x)Se nanowire bundles with sodium citrate solution. CZTSe nanowires were prepared by reacting CuSe nanowire bundles with Zn(CH(3)COO)(2) and SnCl(2) in triethylene glycol. X-ray diffraction (XRD) and selected area electron diffraction studies show that stannite CZTSe is formed. The formed CZTSe nanowire bundles have diameters of 200-400 nm and lengths of up to hundreds of micrometers. CZTSe/CZTS nanocable bundles with similar morphologies were grown by the addition of some elemental sulfur to the reaction system for growth of CZTSe bundles. The stannite CZTSe/kesterite CZTS core/shell structure of the grown nanocables was confirmed by XRD and high-resolution transmission electron microscope investigation. The influence of S/Se molar ratio in the reaction system on the crystallographic structures and optical properties of CZTSe/CZTS nanocables was studied. The obtained CZTSe/CZTS core/shell nanocable bundles show broad and enhanced optical absorption over the visible and near-infrared region, which is promising for use in photovoltaic applications.  相似文献   

3.
Cu2ZnSnS4(CZTS)薄膜太阳能电池具有低成本、高效率、安全无毒等优点,是最具发展前景的太阳能电池之一,近几年来开始受到广泛关注。简要介绍了国内外几种制备Cu2ZnSnS4薄膜的方法,包括蒸发法、溅射法、脉冲激光沉积法、电化学沉积法、喷涂热解法、Sol-gel法、丝网印刷法,并阐述了这几种方法的优点及存在的问题,展望了今后CZTS薄膜的研究方向,认为通过溶剂热或热注入法制备出CZTS纳米晶体后,再通过丝网印刷法或旋涂等法制成CZTS薄膜能降低生产成本,在电池的工业化生产中具有很广阔的应用前景。  相似文献   

4.
In this study, ball cactus-like kesterite Cu2ZnSnS4 microparticles were successfully and rapidly fabricated by chemical solution with microwave irradiation using ethylene glycol as a solvent. And then CZTS thin film was prepared by ink-print method. The samples were characterized by means of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectrometer, scan electron microscopy, transmission electron microscopy, and UV–vis-NIR spectroscopy. The results showed that the as-prepared microparticles had single phase, stoichiometric composition, a ball cactus-like shape with a diameter about 300 nm and that CZTS thin film had large grains and high crystallinity.  相似文献   

5.
以醋酸铜、醋酸锌、氯化亚锡及硫脲为前驱体,油胺为溶剂,采用微波辅助合成Cu2ZnSnS4(CZTS)纳米晶;所得样品的物相、结构、形貌以及光学性能分别用X射线衍射仪、高分辨透射电子显微镜、拉曼光谱仪和紫外-可见分光光度计来表征;结果表明:微波加热13min可合成高质量的锌黄锡矿结构的Cu2ZnSnS4纳米颗粒,CZTS微球平均直径约为23.68nm;所得样品的禁带宽度经估算约为1.52eV,与薄膜太阳能电池所需的最佳禁带宽度相近。  相似文献   

6.
7.
8.
9.
Cu2ZnSnS4 (CZTS) thin films were prepared by a paste coating method as the absorb layer of solar cells. This method is more eco-friendly using ethanol as solvent and more convenient than traditional sol–gel method. The effects of sulfurization temperature on properties of thin film were studied. The results of X-ray diffraction and Raman spectroscopy showed the formation of kesterite structure of CZTS films. The scanning electron microscopy images revealed that CZTS thin film obtained at 550 °C were compact and uniform. The optical band gap of the CZTS film was about 1.5 eV, and the CZTS film had an obvious optoelectronic response. Moreover, CZTS solar cell was prepared with a conversion efficiency of 0.47 %.  相似文献   

10.
Cu2ZnSnS4薄膜具有组成元素来源丰富、吸收系数高等优点,是理想的薄膜太阳能电池吸收层材料。采用磁控溅射法沉积周期性金属叠层前驱体,再进行两步硫化处理制备出Cu2ZnSnS4薄膜,分析第一步硫化(即预硫化)对Cu2ZnSnS4薄膜特性的影响。结果表明,预硫化处理可促进前驱体的硫化反应。经过预硫化处理的Cu2ZnSnS4薄膜的结晶度优于未进行预硫化处理的Cu2ZnSnS4薄膜。当预硫化温度为350℃时,增加预硫化时间有利于硫化反应的进行,并抑制Sn元素损失,但过长的预硫化时间导致Cu2ZnSnS4薄膜中易出现二次相,影响薄膜的特性。预硫化温度350℃、预硫化时间10 min的Cu2ZnSnS4薄膜结晶度最优,薄膜组分具有贫Cu、富Zn特性,且薄膜表面无孔隙。  相似文献   

11.
The spherical Cu2ZnSnS4 nanoparticles with the average diameters (~8–10 nm) have been synthesized by sol gel method. The effects of solvents and reaction temperatures on the properties of the as-synthesized nanoparticles were investigated. The X-ray diffraction shows as grown Cu2ZnSnS4 nanoparticles exhibit kesterite crystal structure along preferential orientation (1 1 2) plane. The crystalline nature of nanoparticles was improved in ethylene glycol solvent with the increase in reaction temperature. Rietveld refinement study was performed and structural parameters were determined for the Cu2ZnSnS4 nanoparticles. The Raman spectra show the main characteristic peak of A1 vibrational mode which confirmed the formation of Cu2ZnSnS4 phase in all the samples. Scanning electron micrographs depict the irregular aggregate formation of nanoparticles in methanol solvent and uniformly distributed aggregates of nanoparticles with ethylene glycol solvent. Transmission electron microscopy results show the synthesis of polycrystalline porous nanostructures and uniform spherical nanoparticles in methanol and ethylene glycol solvents respectively at the temperature of 250 °C. UV–vis absorption spectra indicated the broad absorption in visible range and the band gap of the nanoparticles was found to 1.38 and 1.45 eV which is suitable for absorbing the solar radiation. The obtained results revealed ethylene glycol as a suitable solvent and 250 °C as the favorable synthesis temperature.  相似文献   

12.
The kesterite‐structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth‐abundant low‐cost thin‐film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2. Four features are revealed and highlighted: (i) the strong phase‐competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p‐type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge‐compensated defect clusters such as [2CuZn+SnZn], [VCu+ZnCu] and [ZnSn+2ZnCu] and their contribution to non‐stoichiometry; (iv) the electron‐trapping effect of the abundant [2CuZn+SnZn] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.  相似文献   

13.
Cu2ZnSnS4 (CZTS) films are successfully prepared on Mo substrate by electrochemical epitaxial method. An electrolyte contains 0.124 M CuSO4·5H2O, 0.14 M ZnSO4, 0.13 M SnCl2·2H2O, 0.16 M Na2S2O3·5H2O, 2.25 M NaOH, 1.36 M C6H5Na3O7, 1.00 M C4H6O6. The equilibrium potential for quaternary co-electrodeposited solution is set at ?1.1 ~ ?1.20 V. The results show that elements are deposited in the following sequence: Cu/S/Zn/S/Cu/S/Sn/S…. The ternary and quaternary compounds are formed with the increasing temperature during annealing. Finally the CZTS film can be well formed at 550 °C. The resistivity of CZTS is about 5.6 × 104 Ω cm.  相似文献   

14.
15.
Cu2ZnSnS4 (CZTS) films were obtained by sulfurizing (Cu, Sn) S/ZnS structured precursors prepared by a combination of the successive ionic layer absorption and reaction method and the chemical bath deposition method, respectively. The effect of sulfurization time on structure, composition and optical properties of these CZTS thin films was studied. The results of energy dispersive spectroscopy indicate that the annealed CZTS thin films are of Cu-poor and Zn-rich states. The X-ray diffraction studies reveal that Cu2?x S phase exists in the annealed CZTS thin film prepared by sulfurization for 20 min, while the Raman spectroscopy analysis shows that there is a small Cu2SnS3 phase existing in those by sulfurization for 20 and 40 min. The band gap (E g ) of the annealed CZTS thin films, which are determined by reflection spectroscopy, varies from 1.49 to 1.56 eV depending on sulfurization time. The best CZTS thin film is the one prepared by sulfurization for 80 min, exhibiting a single kesterite structure, dense morphology, ideal band gap (E g  = 1.55 eV) and high optical absorption coefficient (>104 cm?1).  相似文献   

16.
Highly dispersible, uniform size (~7 nm) single-phase Cu2ZnSnS4 nanoparticles have been synthesized by hydrothermal method using non-toxic surfactant (oleic acid). High resolution transmission electron microscopy image indicates good crystallinity of the Cu2ZnSnS4 nanoparticles with the growth along (1 1 2) plane. X-ray photoelectron spectroscopy analyses suggested that the formation of with Cu, Zn, and Sn in +1, +2 and +4 oxidation states. The optical absorption spectrum of Cu2ZnSnS4 nanoparticles exhibits an absorption in the visible region and its optical band gap was found to be ~1.72 eV, which could be much more appropriate for photocatalytic application under visible light irradiation. These Cu2ZnSnS4 nanoparticles have been shown high photocatalytic degradation activity of methylene blue (MB) dye in the presence of visible light irradiation. The rate constant (k) value of Cu2ZnSnS4 nanoparticles is found to be 0.0144 min?1. We have discussed the mechanism of dye degradation process that drives the photocatalytic degradation process. The reusability of the Cu2ZnSnS4 nanoparticles for the dye degradation is also demonstrated.  相似文献   

17.
Cu2ZnSnS4薄膜光电性能及其太阳电池的制备和研究   总被引:1,自引:0,他引:1  
江丰  沈鸿烈  金佳乐  王威 《功能材料》2012,43(15):2040-2044
采用硫化Zn/Sn/Cu金属多层膜的方法制备了太阳电池吸收层用的Cu2ZnSnS4(CZTS)薄膜。用X射线衍射仪、拉曼光谱仪、紫外-可见近红外分光光度计、扫描电镜、能谱仪及数字源表等对薄膜进行了一系列的表征。结果表明制备的CZTS薄膜没有杂相存在并具有标准拉曼峰。薄膜在可见光范围内的吸收系数>104cm-1,同时其光学带隙接近1.5eV。CZTS薄膜具有均匀致密的表面形貌,薄膜元素比例非常接近标准化学计量比。此外,CZTS薄膜呈现显著的光电流响应性能,其光电流的激发和衰减时间分别为0.0736和0.2646s。  相似文献   

18.
《Advanced Powder Technology》2014,25(5):1554-1559
For the first time, hierarchical doughnut-shaped Cu2ZnSnS4 (CZTS) microparticles were synthesized by microwave-assisted solution method. N,N-dimethylformamide and polyvinylpyrrolidone (PVP) were used as solvent and stabilizing agent respectively, and the results showed that PVP played an important role in the formation of hierarchical nanostructures. Structural analysis by X-ray diffraction and Raman studies confirmed the formation of single phase kesterite CZTS. Morphological analysis by scanning electron microscope showed doughnut-shaped CZTS microparticles composed of large number of interpenetrating nanoplates. Optical analysis by UV–Vis diffused reflectance spectra showed strong absorption in the visible region with an optical band gap of 1.54 eV. Asymmetric broad emission bands around 1.55 eV and 1.30 eV were observed in the photoluminescence spectrum. A possible formation mechanism for doughnut-shaped CZTS microparticles was put forward and discussed briefly.  相似文献   

19.
综述了CZTS(Cu2ZnSnS4)材料的研究现状,介绍了CZTS材料的结构性质、光学性质、电学性质、薄膜的制备方法以及Na扩散对其性能的影响,最后探讨了目前存在的问题及其今后的研究发展方向。  相似文献   

20.
采用循环伏安法研究了制备CZTS薄膜四元预制层的电化学沉积机理。结合XRD,SEM,EDS和Raman技术分析预制层退火的相转变机制。结果表明:溶液中Cu2+和Sn2+浓度不仅影响其本身的沉积速率,还影响溶液中其他金属元素的沉积速率,而Zn2+浓度仅影响其本身沉积速率。四元预制层的沉积以原子层外延为机理,在负电位作用下,Cu2+先转变为Cu原子沉积在衬底表面,且与衬底附近析出的S原子发生化学反应,在衬底上生成CuS,同样,SnS和ZnS也以这种方式交替沉积在衬底上。预制层二元硫化物随着退火温度的升高逐渐转变为Cu2(3)SnS3(4)和Cu2ZnSnS4。利用四元共电沉积预制层550℃退火1h合成的Cu2ZnSnS4薄膜原子比为Cu∶Zn∶Sn∶S=23.72∶12.22∶13.07∶50.99。无偏压下合成的CZTS薄膜光电流达到约6nA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号