首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

2.
In the present work, we have demonstrated the fabrication of catechol (CC) biosensor based on reduced graphene oxide (rGO) decorated β-cyclodextrin (β-CD) nanosheet immobilized using nafion (Nf) on modified GCE (glassy carbon electrode). The rGO/β-CD nanocomposite is synthesized through sonochemical approach and characterized by spectral (UV–visible, FT-IR, and Raman), analytical techniques (XRD, SEM, SAED, mapping analysis, HR-TEM and EDX) and electrochemical studies. The rGO/β-CD/Nf modified GCE exhibit a prominent electrocatalytic activity towards selective and sensitive determination of CC than other modified electrodes. Besides, the electrochemical sensor was revealed an excellent current response for the determination of CC with wide linear ranges (0.1–0.7 µM), high sensitivity (19.1 µA µM-1cm2) and very low detection limit (LOD) 0.0012 µM. The excellent reproducibility, selectivity, stability, and sensitivity results are achieved for the determination of CC.  相似文献   

3.
Sensitive and selective detection of nitric oxide (NO) in the human body is crucial since it has the vital roles in the physiological and pathological processes. This study reports a new type of electrochemical NO biosensor based on zinc‐dithiooxamide framework derived porous ZnO nanoparticles and polyterthiophene‐rGO composite. By taking advantage of the synergetic effect between ZnO and poly(TTBA‐rGO) (TTBA = 3′‐(p‐benzoic acid)‐2,2′:5′,2″‐terthiophene, rGO = reduced graphene oxide) nanocomposite layer, the poly(TTBA‐rGO)/ZnO sensor probe displays excellent electrocatalytic activity and explores to detect NO released from normal and cancer cell lines. The ZnO is immobilized on a composite layer of poly(TTBA‐rGO). The highly porous ZnO offers a high electrolyte accessible surface area and high ion–electron transport rates that efficiently catalyze the NO reduction reaction. Amperometry with the modified electrode displays highly sensitive response and wide dynamic range of 0.019–76 × 10?6m with the detection limit of 7.7 ± 0.43 × 10?9m . The sensor probe is demonstrated to detect NO released from living cells by drug stimulation. The proposed sensor provides a powerful platform for the low detection limit that is feasible for real‐time analysis of NO in a biological system.  相似文献   

4.
The current research presents the effects of Ag nanoparticles (NPs) as a functionalization agent to improve the rGO/g-C3N4 nanocomposites as the gas sensor. Existing characterization techniques, including energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), confirmed the successful synthesis of Ag/rGO/g-C3N4 nanocomposites. Besides Ag/rGO/g-C3N4 nanocomposites, two other samples, including pristine g-C3N4 and rGO/g-C3N4 nanocomposites were synthesized, and their performance in sensing acetone, carbon monoxide, methanol, isopropanol, formalin, and toluene at different temperatures, was investigated. The Ag/rGO/g-C3N4 nanocomposite-based sensor exhibited good selectivity of 68.77% and a high response of 42.97 to 50 ppm toluene at 100 °C, a significant reduction in operating temperature and a substantial increase in response and selectivity, in comparison to the rGO/g-C3N4 nanocomposite-based sensor. Moreover, the Ag/rGO/g-C3N4 nanocomposite-based sensor demonstrated excellent long-term stability. The role of Ag NPs and rGO in the improvement of toluene sensing of g-C3N4 nanosheets is explained comprehensively.  相似文献   

5.

Au@BSA was prepared at pH 8, pH 9, pH 10, pH 11, pH 11.4, and pH 12 as the working electrode of the non-enzymatic glucose sensor by biological template method. The six kinds of gold-cluster film working electrodes sintered by Au@BSA show golden color, especially the golden films corresponding to pH 8 and pH 12 are obvious. The gold-cluster films at pH 8, pH 9, pH 10, and pH 11 showed mono-layer gold nanoparticles, while the gold-cluster film at pH 11.4 showed porous structure. The gold-cluster film prepared at pH 12 presents a multi-layer 3D structure composed of a large number of gold nanoparticles. The linear detection range of the non-enzymatic glucose sensor prepared at pH 8 is the widest among the six sensors, and its sensitivity is also better than the other four sensors except the sensor prepared at pH 12. The sensor with the gold-cluster film-modified working electrode prepared at pH 12 show the highest sensitivity (330.002 μA mM?1 cm?2), because multi-layer 3D structure can bring more electric catalytic active site for this sensor. The electrochemical impedance spectroscopy showed that the specific surface area of the sensor prepared at pH 12 was much larger than that of the other five sensors. We provide a pH cycling method for once shaping preparation that can be extended to other metal films or metal-oxide films electrochemical interfaces. The Au@BSA non-enzymatic glucose sensor prepared in this paper is stable and can resist the toxicity of excessive chloride ions without losing activity.

  相似文献   

6.
An amperometric glucose biosensor has been developed using DNA as a matrix of Glucose oxidase (GOx) at Prussian-blue (PB)-modified glassy carbon (GC) electrode. GC electrode was chemically modified by the PB. GOx was immobilized together with DNA at the working area of the PB-modified electrode by placing a drop of the mixture of DNA and GOx. The response of the biosensor for glucose was evaluated amperometrically. Upon immobilization of glucose oxidase with DNA, the biosensor showed rapid response toward the glucose. On the other hand, no significant response was obtained in the absence of DNA. Experimental conditions influencing the biosensor performance were optimized and assessed. This biosensor offered an excellent electrochemical response for glucose concentration in micro mol level with high sensitivity and selectivity and short response time. The levels of the relative standard deviation (RSDs), (<4%) for the entire analyses reflected a highly reproducible sensor performance. Through the use of optimized conditions, a linear relationship between current and glucose concentration was obtained up to 4 x 10(-4) M. In addition, this biosensor showed high reproducibility and stability.  相似文献   

7.
Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of ? 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s? 1; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M? 1 cm? 2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid.  相似文献   

8.
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm ?1 cm?2 for glucose and 11.4 µA mm ?1 cm?2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.  相似文献   

9.
A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 µM), wide linear range (1 µM–12 mM), short response time (about 5 s), high sensitivity (42.0 µA mM? 1 cm? 2) and stability (83% remains after 3 weeks).  相似文献   

10.
We report a novel approach to fabrication of an amperometric biosensor with an enzyme, a plasma-polymerized film (PPF), and carbon nanotubes (CNTs). The CNTs were grown directly on an island-patterned Co/Ti/Cr layer on a glass substrate by microwave plasma enhanced chemical vapor deposition. The as-grown CNTs were subsequently treated by nitrogen plasma, which changed the surface from hydrophobic to hydrophilic in order to obtain an electrochemical contact between the CNTs and enzymes. A glucose oxidase (GOx) enzyme was then adsorbed onto the CNT surface and directly treated with acetonitrile plasma to overcoat the GOx layer with a PPF. This fabrication process provides a robust design of CNT-based enzyme biosensor, because of all processes are dry except the procedure for enzyme immobilization. The main novelty of the present methodology lies in the PPF and/or plasma processes. The optimized glucose biosensor revealed a high sensitivity of 38 μA mM(-1) cm(-2), a broad linear dynamic range of 0.25-19 mM (correlation coefficient of 0.994), selectivity toward an interferent (ascorbic acid), and a fast response time of 7 s. The background current was much smaller in magnitude than the current due to 10 mM glucose response. The low limit of detection was 34 μM (S/N = 3). All results strongly suggest that a plasma-polymerized process can provide a new platform for CNT-based biosensor design.  相似文献   

11.
Porous copper@carbon agglomerate (PCCA) is prepared by pyrolysis of Cu3(BTC)2·3H2O (Cu–BTC, BTC = 1,3,5-benzenetricarboxylic acid) in 5% H2–N2 mixture atmosphere. The phase and morphology evolution are thoroughly examined by XRD, Raman, BET, TG, XPS, SEM and TEM, respectively. The results show that PCCA is formed at 400 °C and maintains the cubic morphology of the original Cu–BTC crystal. PCCA is composed by round-shaped copper nanoparticles that covered outside by thin layer of carbon. The non-enzymatic glucose sensing properties of PCCA-modified glassy carbon electrode (Cu/GCE) are characterized by cyclic voltammetry. The sensor shows high sensitivity of 614.3 µA mM?1 to glucose oxidation and negligible responses toward interference from uric acid, ascorbic acid, dopamine and l-cysteine at the level of their physiological concentrations. The sensor also exhibits rapid response (< 6 s), wide linear range (up to 3.33 mM) and low detection limit (0.29 µM at signal/noise ratio (S/N) = 3). Finally, the good stability, reproducibility and repeatability to glucose detection make PCCA a promising catalyst for non-enzymatic glucose sensor.  相似文献   

12.
Platinum nanoparticles (Ptnano) were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical l-lactate biosensor. The composite film of MWCNTs and Ptnano was dispersed on the surface of the glassy carbon electrode (GCE). l-lactate oxidase (LOD) was immobilized on MWCNTs/Ptnano/GCE surface by adsorption. The resulting LOD/MWCNTs/Ptnano electrode was covered by a thin layer of sol–gel to avoid the loss of LOD in determination and to improve the anti-interferent ability. Moreover, the sol–gel microenviroment contributes to both intensified stability and permselectivity. The cyclic voltammetry results indicated that MWCNTs/Ptnano catalyst displayed a higher performance than MWCNTs. Under the optimized conditions of applied potential 0.5 V, pH 6.4, room temperature, the proposed biosensor showed a large determination range (0.2–2.0 mM), a short response time (within 5 s), a high sensitivity (6.36 μA mM− 1) and good stability (90% remains after 4 weeks). The fabricated biosensor had practically good selectivity against interferences. The results for whole blood samples measured by the present biosensor showed a good agreement with those measured by spectrophotometric method.  相似文献   

13.
3D graphene frameworks/Co3O4 composites are produced by the thermal explosion method, in which the generation of Co3O4 nanoparticles, reduction of graphene oxide, and creation of 3D frameworks are simultaneously completed. The process prevents the agglomeration of Co3O4 particles effectively, resulting in monodispersed Co3O4 nanoparticles scattered on the 3D graphene frameworks evenly. The prepared 3D graphene frameworks/Co3O4 composites used as electrodes for supercapacitor display a definite improvement on electrochemical performance with high specific capacitance (≈1765 F g?1 at a current density of 1 A g?1), good rate performance (≈1266 F g?1 at a current density of 20 A g?1), and excellent stability (≈93% maintenance of specific capacitance at a constant current density of 10 A g?1 after 5000 cycles). In addition, the composites are also employed as nonenzymatic sensors for the electrochemical detection of glucose, which exhibit high sensitivity (122.16 µA mM ?1 cm?2) and noteworthy lower detection limit (157 × 10?9 M , S/N = 3). Therefore, the authors expect that the 3D graphene frameworks/Co3O4 composites described here would possess potential applications as the electrode materials in supercapacitors and nonenzymatic detection of glucose.  相似文献   

14.
The dopamine-imprinted conducting polymer film of 5-amino 8-hydroxy quinoline (AHQ) was electrodeposited on reduced graphene oxide (rGO)-modified glassy carbon (GC) electrode and was applied as a molecular recognition element for the selective determination of dopamine. The molecularly imprinted polymer (MIP)-modified electrode showed an excellent affinity towards dopamine due to the presence of imprinted site through hydrogen bonding interaction between dopamine and poly (AHQ) membrane. The molecular recognition ability of MIP-modified electrode was analyzed by cyclic voltammetric and differential pulse voltammetric techniques. The most stable geometry of the template–monomer complex in the pre-polymerization mixture was calculated by computational approaches. The rGO modification augmented both surface area and electron transfer kinetics of the bare electrode. The GC/rGO/MIP electrode possessed 2.83 fold current enhancements when compared to GC/MIP electrode, indicating the improvement in sensitivity due to rGO modification. The limit of detection and sensitivity of GC/rGO/MIP electrode was observed to be 32.7 nM and 13.3 AM?1 cm?2, respectively. The imprinting methodology provided an exceptional selectivity towards the detection of dopamine even in the presence of high concentration of possible physiological interferents. Moreover, the fabricated electrode was successfully employed for the detection of dopamine in human blood plasma samples proving the effectiveness of the sensor for the sensitive detection of dopamine from real samples.  相似文献   

15.
A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA)3/Pt). The (PVS/PAA)3/Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 μM estimated at a signal-to-noise ratio of 3, a linear range of 1–10 mM, the sensitivity of 0.45 μA/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization.  相似文献   

16.
We report a double-sacrificial-template method for the fabrication of a Cu2O and a reduced graphene oxide (rGO) porous nanocomposite (Cu2O/rGO), which has great potential in non-enzymatic glucose detection. Firstly, an aqueous graphene oxide (GO) solution was dispersed in a polystyrene (PS)/cyclohexane (CH) solution to prepare a water-in-oil emulsion at 50 °C. Then, the emulsion was cast onto a glass substrate to evaporate solvents and cooled down to room temperature. During that time, the self-assembly of the GO sheets and the PS chains takes place at the interface. The cooling of the emulsion below the θ temperature of the system PS/CH (34.5 °C) facilitates the precipitation of the PS chains at the interface to form microcapsules. A sponge-like PS/GO composite film was thus obtained after complete evaporation of solvents, where the water droplets in the emulsion served as the first sacrificial template. The PS/GO composite was loaded with copper compounds and was then carbonized to remove the second template of the polymer. In this manner, a free-standing porous nanocomposite of Cu2O/rGO was fabricated, and its structure was carefully characterized. The composite was applied as the working electrode in order to take advantages of its porous microstructure, the conductivity of rGO, and the electrochemical performance of crystalline nano-Cu2O. The electrochemical responses of the composite to glucose were evaluated at glucose concentration ranging from 20 to 1000 μM. The results evidence that the porous nanocomposite of Cu2O/rGO exhibits fast and linear amperometric responses to glucose with excellent sensitivities. Moreover, the stability of the Cu2O/rGO composite in the electrolyte solution and its selective response to glucose have been demonstrated to indicate its practical potential.  相似文献   

17.
We report a new method for selective detection of d(+)-glucose using a copper nanoparticles (Cu-NPs) attached zinc oxide (ZnO) film coated electrode. The ZnO and Cu-NPs were electrochemically deposited onto indium tin oxide (ITO) coated glass electrode and glassy carbon electrode (GCE) by layer-by-layer. In result, Cu-NPs/ZnO composite film topography was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. SEM and AFM confirmed the presence of nanometer sized Cu-NPs/ZnO composite particles on the electrode surface. In addition, X-ray diffraction pattern revealed that Cu-NPs and ZnO films were attached onto the electrode surface. Indeed, the Cu-NPs/ZnO composite modified electrode showed excellent electrocatalytic activity for glucose oxidation in alkaline (0.1 M NaOH) solution. Further, we utilized the Cu-NPs/ZnO composite modified electrode as an electrochemical sensor for detection of glucose. This glucose sensor showed a linear relationship in the range from 1 × 10? 6 M to 1.53 × 10? 3 M and the detection limit (S/N = 3) was found to be 2 × 10? 7 M. The Cu-NPs/ZnO composite as a non-enzymatic glucose sensor presents a number of attractive features such as high sensitivity, stability, reproducibility, selectivity and fast response. The applicability of the proposed method to the determination of glucose in human urine samples was demonstrated with satisfactory results.  相似文献   

18.
Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D‐networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10?6–4 × 10?3 m ), high sensitivity (1650 µA cm?2 mm ?1), and low detection limit (0.5 × 10?6 m ), together with high selectivity, great long‐term stability, and good reproducibility in glucose determination. The outstanding performance of the CuO@C/D electrode can be ascribed to the synergistic effect coming from high‐electrocatalytic‐activity CuO nanoparticles and 3D‐networked conductive C/D film. The C/D film is composed of carbon nanowalls and diamond nanoplatelets; and owing to the large surface area, accessible open surfaces, and high electrical conduction, it works as an excellent transducer, greatly accelerating the mass‐ and charge‐transport kinetics of electrocatalytic reaction on the CuO biorecognition element. Besides, the vertical aligned diamond nanoplatelet scaffolds could improve structural and mechanical stability of the designed electrode in long‐term performance. The excellent CuO@C/D electrode promises potential application in practical glucose detection, and the strategy proposed here can also be extended to construct other biorecognition elements on the 3D‐networked conductive C/D transducer for various high‐performance nonenzymatic electrochemical biosensors.  相似文献   

19.

Supercapacitors have the characteristics of high specific capacitance, long cycle life and fast charging ability, which have shown extremely valuable applications in energy storage fields. Improving the electrode materials is a crucial approach to achieve high capacity. Vanadium nitride (VN) has higher theoretical capacitance than noble metal oxides, as well as better chemical stability and good electrical conductivity. Herein, a composite of VN nanowires with multiple cavities encapsulated in N-doped reduced graphene oxide lamellar layers (VNNWs@rGO) has been synthesized by facile freeze-casting and subsequent nitridation technique. The hierarchical VNNWs@rGO composite exhibited excellent supercapacitor performance: high capacitances of 222 and 65 F g?1 were achieved at current densities of 0.5 and 10 A g?1, respectively. The improved electrochemical performance is associated with the unique structural design: the N-doped rGO sheets endowed enhanced electric conductivity and chemical stability for VN, the interconnected laminar network of VNNWs@rGO are crucial for electrolyte penetration and charge transfer, and the cavities and nanoparticles inside the VN nanowires can provide abundant active sites for electric double-layer capacitor and pseudocapacitance.

  相似文献   

20.

In this reported study, novel multiple dimensional ZIF-67/rGO/NiPc composite materials were prepared for supercapacitors. The electrochemical test showed that the ZIF-67/rGO/NiPc electrode achieved a remarkable specific capacitance of 860 F g?1 at a current density of 1 A g?1, which was superior to that of the rGO/NiPc and ZIF-67/rGO electrodes. An asymmetric supercapacitor based on ZIF-67/rGO/NiPc//activated carbon exhibited a high specific capacitance of 200.67 F g?1 and an extraordinary energy density of 62.7 Wh kg?1 at a corresponding power density of 750 W kg?1. In addition, the device demonstrated 94.6% capacitance retention after 5000 cycles. The assembled asymmetric supercapacitors could easily powered a green light-emitting diode. This work revealed a promising research route for the rational construction of multiple dimensioned high-performance electrodes materials for use in new energy storage devices.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号