首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.  相似文献   

2.
Experimental data on DNA double strand break (DSB) induction in human fibroblasts (AG1522), following irradiation with several radiation qualities, namely gamma rays, 0.84 MeV protons, 58.9 MeV u(-1) carbon ions, iron ions of 115 MeV u(-1), 414 MeV u(-1), 1 GeV u(-1), and 5 GeV u(-1), are presented. DSB yields were measured by calibrated Pulsed Field Gel Electrophoresis in the DNA fragment size range 0.023-5.7 Mbp. The DSB yields show little LET dependence, in spite of the large variation of the latter among the beams, and are slightly higher than that obtained using gamma rays. The highest yield was found for the 5 GeV u(-1) iron beam, that gave a value 30% higher than the 1 GeV u(-1) iron beam. A phenomenological method is used to parametrise deviation from randomness in fragment size spectra.  相似文献   

3.
The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active (6LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150 +/- 15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210 +/- 15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.  相似文献   

4.
We present results from measurements performed with low fluences (10(5)-10(6) cm(-2)) of 15, 25 and 40 MeV u(-1) carbon, 25 MeV u(-1) oxygen and 40 MeV u(-1) neon ions incident on TLD-100 chips. Dosemeters were arranged individually or in stacks in front of the beam, allowing the study of various linear energy transfer (LET) values simultaneously. The thermoluminescence (TL) total signal is observed to be a linear function of deposited energy. To assess the contribution to the glow curve from the high-temperature peaks, two methods were studied: ratios of peak heights (peak 7 with respect to peak 5), and ratios of areas of the deconvoluted high-temperature peaks with respect to peak 5. The ratios were evaluated as a function of dose, showing in both methods a dependence on LET and ion identity. Some of the studied ions show these ratios to be independent of dose, up to 500 mGy, while for other ions, departures from linearity up to 4.5% +/- 2.5% per 100 mGy are observed at 500 mGy. These results show that, in general, the incident radiation LET is not a parameter that can be deduced from the glow curve.  相似文献   

5.
Isomer excitation by gamma,gamma' reactions and aluminium oxide thermoluminescence dosemeters (TLDs) have been used to monitor bremsstrahlung from the 4 MeV electron beam of a linear accelerator type LPR4 produced on a 0.9 mm Pt converter foil. Natural indium and osmium as well as TLDs have been irradiated at different distances (2-11 cm) and angles (0 degrees-90 degrees). Dose rates measured by TLDs were 5-110 kGy x h(-1). Isomer excitation of 115In (half-life 4.5 h) was used for monitoring bremsstrahlung of energies above 1 MeV, while that of 189Os (half-life 5.8 h) extended the available range down to 200 keV. Isomer production yields measured by gamma spectrometry and found to be about 10(-19)-10(-18) Bq per nucleus were calibrated against dose rate. A graphical method based on a semiempirical formula was used to evaluate the bremsstrahlung flux as well as the dose rate from the activity of isomeric monitors with uncertainties below 20%. The method is simple, of linear response in a large scale, independent of temperature, and able to monitor extremely high gamma intensities.  相似文献   

6.
Conventional radiation monitors have been found to underestimate the personal dose equivalent in the high-energy bremsstrahlung photon radiation fields encountered near electron storage rings. Depth-dose measurements in a water phantom were carried out with a radiation survey meter in the bremsstrahlung photon radiation fields from a 450 MeV electron storage ring to find out the magnitude of the underestimation. Dose equivalent indicated by the survey meter was found to build up with increase in thickness of water placed in front of the meter up to certain depth and then reduce with further increase in thickness. A dose equivalent build up factor was estimated from the measurements. An absorbed dose build up factor in a water phantom was also estimated from calculations performed using the Monte Carlo codes, EGS-4 and EGSnrc. The calculations are found to be in very good agreement with the measurements. The studies indicate inadequacy of commercially available radiation monitors for radiation monitoring within shielded enclosures and in streaming high-energy photon radiation fields from electron storage rings, and the need for proper correction for use in such radiation fields.  相似文献   

7.
The realisation of the National Center of Hadrontherapy was funded by the Italian Government in 2002. The Centre will be built in the area of Pavia (Italy). The synchrotron designed in the framework of this programme will accelerate protons and carbon ions up to 250 MeV and 400 MeV u(-1), respectively. Some of the main aspects which were taken into account in the design of the acceleration system are the patient's safety and the beam control. From this point of view an important role is played by the beam dumps in the synchrotron ring and upstream of the extraction system. In particular, an horizontal and a vertical beam dump will be installed in the synchrotron ring: the former will be used for lowering the beam intensity and the latter for beam abortion. The dump at the extraction will absorb the particles during the mounting and the falling ramps of the synchrotron magnetic cycle, thus extracting only the flat top of the ion spill. Beam dumps can produce intense fields of secondary radiation (neutrons, charged light-hadrons and photons) and high rates of induced activity, since they can absorb the beam completely. Usually they have to be shielded to protect the electronics during machine operation and to attenuate the radiation dose below the limits imposed by the law when the personnel access to the synchrotron hall. The part of the shielding design of the beam dumps concerning with the acceleration of protons was made using Monte Carlo simulations with the FLUKA code. Both induced activity and secondary radiation were taken into account. The shields against secondary radiation produced by carbon ions were designed, referring only to secondary neutrons, taking double-differential distributions from the literature as sources for the FLUKA simulations. The induced activity from carbon ions interactions was estimated analytically, using the data generated by the EPAX 2 code. The dose-equivalent rates from the induced radionuclides were calculated at 1 m from the shielded dumps, taking into account the contribution of activated components of the synchrotron ring.  相似文献   

8.
The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept <1 mSv y(-1) in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipment will begin a few months later.  相似文献   

9.
Secondary neutrons produced in high-energy therapeutic ion beams require special attention since they contribute to the dose delivered to patient, both to tumour and to the healthy tissues. Moreover, monitoring of neutron production in the beam line elements and the patient is of importance for radiation protection aspects around ion therapy facility. Monte Carlo simulations of light ion transport in the tissue-like media (water, A-150, PMMA) and materials of interest for shielding devices (graphite, steel and Pb) were performed using the SHIELD-HIT and MCNPX codes. The capability of the codes to reproduce the experimental data on neutron spectra differential both in energy and angle is demonstrated for neutron yield from the thick targets. Both codes show satisfactory agreement with the experimental data. The absorbed dose due to neutrons produced in the water and A-150 phantoms is calculated for proton (200 MeV) and carbon (390 MeV/u) beams. Secondary neutron dose contribution is approximately 0.6% of the total dose delivered to the phantoms by proton beam and at the similar level for both materials. For carbon beam the neutron dose contribution is approximately 1.0 and 1.2% for the water and A-150 phantoms, respectively. The neutron ambient dose equivalent, H(10), was determined for neutrons leaving different shielding materials after irradiation with ions of various energies.  相似文献   

10.
The 4.4 MeV photon reference field described in ISO 4037 is produced by the (12)C(p,p')(12)C (E(x) = 4.4389 MeV) reaction using a thick elemental carbon target and a proton beam with an energy of 5.7 MeV. The relative abundance of the isotope (13)C in elemental carbon is 1.10%. Therefore, the 4.4 MeV photon field is contaminated by neutrons produced by the (13)C(p,n) (13)N reaction (Q = -3.003 MeV). The ambient dose equivalent H*(10) produced by these neutrons is of the same order of magnitude as the ambient dose equivalent produced by the 4.4 MeV photons. For the calibration of dosemeters, especially those also sensitive to neutrons, the spectral fluence distribution of these neutrons has to be known in detail. On the other hand, a mixed photon/neutron field is very useful for the calibration of tissue-equivalent proportional counters (TEPC), if this field combines a high-linear energy transfer (LET) component produced by low-energy neutrons and a low-LET component resulting from photons with about the same ambient dose equivalent and energies up to 7 MeV. Such a mixed field was produced at the PTB accelerator facility using a thin CaF(2) + (nat)C target and a 5.7 MeV proton beam.  相似文献   

11.
A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with (6)Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities.  相似文献   

12.
A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors.  相似文献   

13.
A compact liquid organic neutron spectrometer based on a single NE213 liquid scintillator (5 cm diameter x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse-height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.  相似文献   

14.
High-energy linear accelerators (linacs) have several advantages, including low skin doses and high dose rates at deep-seated tumours. But, at energies more than 8 MeV, photonuclear reactions produce neutron contamination around the therapeutic beam, which may induce secondary malignancies. In spite of improvements achieved in medical linac designs, many countries still use conventional (non-intensity-modulated radiotherapy) linacs. Hence, in these conventional machines, fitting the beam over the treatment volume may require using blocks. Therefore, the effect of these devices on neutron production of linacs needs to be studied. The aim of this study was to investigate the effect of field shaping blocks on photoneutron dose in the treatment plane for two high-energy medical linacs. Two medical linacs, a Saturn 43 (25 MeV) and an Elekta SL 75/25 (18 MeV), were studied. Polycarbonate (PC) films were used to measure the fluence of photoneutrons produced by these linacs. After electrochemical etching of the PC films, the neutron dose equivalent was calculated at the isocentre and 50 cm away from the isocentre. It was noted that by increasing the distance from the centre of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both the open and blocked fields. Increasing the energy of the photons causes an increase in the amount of photoneutron dose equivalent. At 25 MeV photon energy, the lead blocks cause a meaningful increase in the dose equivalent of photoneutrons. In this research, a 30% increase was seen in neutron dose contribution to central axis dose at the isocentre of a 25 MeV irregular field shaped by lead blocks. It is concluded that lead blocks must be considered as a source of photoneutron production when treating irregular fields with high-energy photons.  相似文献   

15.
The Italian National Centre for Oncological Hadrontherapy is currently under construction in Pavia. It is designed for the treatment of deep-seated tumours (up to a depth of 27 cm of water equivalent) with proton and C-ion beams as well as for both clinical and radiobiological research. The particles will be accelerated by a 7-MeV u(-1) LINAC injector and a 400-MeV u(-1) synchrotron. In the first phase of the project, three treatment rooms will be in operation, equipped with four fixed beams, three horizontal and one vertical. The accelerators are currently undergoing commissioning. The main radiation protection problems encountered (shielding, activation, etc.) are hereby illustrated and discussed in relation to the constraints set by the Italian national authorities.  相似文献   

16.
The radionuclides used in positron emission tomography (PET) are short-lived and generally must be produced on site using a cyclotron. A common end product of the nuclear reactions used to produce the PET radionuclides is neutron radiation. These neutrons could potentially contribute to the annual effective dose received by hospital personnel. A Bonner sphere spectrometer was used to measure neutron energy spectra at three locations near a self-shielded PET cyclotron. This cyclotron accelerates protons to 11 MeV. The neutron measurements reported were made during the production of 18F via the 18O(p,n)18F reaction (Q = -2.4 MeV). Neutron spectra were obtained with the BUMS unfolding code and converted to dose equivalent rates.  相似文献   

17.
During radiation therapy with an ion beam, the production of secondary particles like neutrons, protons and heavier ions contribute to the dose delivered to tumour and healthy tissues outside the treated volume. Also, the secondary particles leaving the patient are of interest for radiation background around the ion-therapy facility. Calculations of secondary particle production and the dose absorbed by water, soft tissue and a multi-material phantom simulating the heterogeneous media of the patient body were performed for protons, helium, lithium and carbon ions in the energy range up to 400 MeV u(-1). The Monte Carlo code SHIELD-HIT for transport of protons and light ions in tissue-like media was used in these studies. The neutron ambient dose-equivalent, H*(10), was determined for neutrons leaving the water phantom irradiated with different light ion beams. The comparison of calculated secondary particle production in the water and PMMA phantoms irradiated with helium and carbon ions shows satisfactory agreement with experimental data.  相似文献   

18.
CERN is designing a 2.2-GeV Superconducting Proton Linac (SPL) with a beam power of 4 MW, to be used for the production of a neutrino superbeam. The SPL front end will initially accelerate 2 x 10(14) negative hydrogen ions per second up to an energy of 120 MeV. The FLUKA Monte Carlo code was employed for shielding design. The proposed shielding is a combined iron-concrete structure, which also takes into consideration the required RF wave-guide ducts and access labyrinths to the machine. Two beam-loss scenarios were investigated: (1) constant beam loss of 1 Wm(-1) over the whole accelerator length and (2) full beam loss occurring at various locations. A comparison with results based on simplified approaches is also presented.  相似文献   

19.
An advanced-type small, light, multi-functional electronic personal dosemeter has been developed using silicon semiconductor radiation detectors for dose management of workers at nuclear power plants and accelerator facilities. This dosemeter is 62 x 82 x 27 mm(3) in size and approximately 130 g in weight, which is capable of measuring personal gamma ray and neutron dose equivalents, Hp(10), simultaneously. The neutron dose equivalent can be obtained using two types of silicon semiconductors: a slow-neutron sensor (<1 MeV) and a fast-neutron sensor (>1 MeV). The slow neutron sensor is a 10 x 10 mm(2) p-type silicon on which a natural boron layer is deposited around an aluminium electrode. The fast neutron sensor is also a 10 x 10 mm(2) p-type silicon crystal on which an amorphous silicon hydride is deposited. The neutron energy response corresponding to the fluence-to-dose-equivalent conversion coefficient given by ICRP Publication 74 has been evaluated using a monoenergetic neutron source from 250 keV to 15 MeV at the Fast Neutron Laboratory of Tohoku University. As the result, the Hp(10) response to neutrons in the energy range of 250 keV and 4.4 MeV within +/-50% difference has been obtained.  相似文献   

20.
MOSFET dosimeters have been exposed to a large range of radiation fields: 192 MeV positive pions, 500 MeV electrons, 23 GeV protons and a wide energy-spectrum of neutrons. This is the first time that pion dosimetry with MOSFETs is presented. The response curves of the devices are given, together with an evaluation of their dynamic range, showing that these dosimeters can be successfully used to monitor radiation fields up to very high doses and fluences. In the 500 MeV electron beam, an irradiation of p+/n/n+ diodes together with MOSFETs was also performed. The results of this irradiation show that both types of dosimeters can be used in CMS to monitor in real time the radiation environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号