首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。  相似文献   

2.
关联规则挖掘是数据挖掘及知识发现领域的重要研究内容之一,其核心任务是挖掘数据库中的频繁项集.Apriori算法是频繁项集挖掘的有效算法.在Apriori的算法中,采用哈希树存储平凡项集的候补项集以便快速计算其支持度.本文在分析算法所存在的效率瓶颈的基础上,提出了一个有效的改进算法,通过利用一维数组替代算法中复杂的哈希树...  相似文献   

3.
关联规则挖掘的一种改进算法   总被引:4,自引:0,他引:4  
关联规则挖掘是数据挖掘中重要的研究课题,R.Agrawal和R.Srikant于1994年提出的Apriori算法是关联规则挖掘的最有影响的算法,针对Apriori算法中频繁项集产生效率低这个核心问题,本文给出分辨矩阵、分辨向量并提出基于分辨矩阵的改进算法,它能有效提高频繁集的产生效率.  相似文献   

4.
对Apriori算法加以改进,提出了一种更高效的关联规则挖掘算法,在扫描数据库的同时把支持每个项目的事务都标记出来,采用一种新的方法来计算候选项目集的支持度.该算法只需对源数据库进行一次扫描,就可以找出所有的频繁集,具有很高的效率.  相似文献   

5.
针对Apriori算法寻找频繁项集需要反复扫描数据库的问题,提出了一种将事务数据布尔化,并在其基础上通过优化连接和剪枝,快速查找频繁项集的思想。即通过优化连接和剪枝,减少候选项集,并根据判断相应布尔向量"与"运算的结果,快速地归纳出频繁项集。研究和实验表明,该算法不仅只需扫描一次数据库,而且还具有查找速度快,节省内存空间和处理项目集维数多等优点。  相似文献   

6.
一种多重最小支持度关联规则挖掘算法   总被引:5,自引:0,他引:5  
针对单一最小支持度挖掘关联规则不能反应不同数据项出现频度与性质的问题,提出了一个基于频繁模式树的多重支持度关联规则挖掘算法MSDMFIA(Multiple minimum Supports for Discover Maximum Fre-quent Item sets Algorithm),根据不同数据项的特点定义多重支持度,通过挖掘数据库中的最大频繁项目集,计算最大频繁候选项目集在数据库中的支持度来发现关联规则.该算法可以解决关联规则挖掘中经常出现的稀少数据项问题,并解决了传统的关联规则挖掘算法中的生成频繁候选集和多次扫描数据库的性能瓶颈.实验结果表明,本文提出的算法在功能和性能方面均优于已有算法.  相似文献   

7.
一种Apriori的改进算法   总被引:3,自引:0,他引:3  
在对关联规则挖掘算法Apriori进行深入研究的基础上,提出了一种采用频繁项集Lk-1 与L1连接生成候选项集Ck的思想,并基于这种新的思想提出了一种优化的算法1-K_Apriori算法.在真实数据集和实验数据集上所做的实验及结果表明,1-K_Apriori算法是有效的.  相似文献   

8.
关联规则挖掘中最大频繁集的双向查找算法   总被引:5,自引:0,他引:5  
在事务数据库中挖掘关联规则已成为数据挖掘领域的一个重要研究课题,而其中频繁项集的查找时间是影响挖掘效率的关键因素。基于Apriori算法,根据最大频繁集的双向查找算法,提出了算法的实现步骤,让两个方向的剪枝工作实现信息共享,加快最大频繁集的查找速度,节省I/O操作时间,并且通过实例和仿真实验验证了算法的高效性。  相似文献   

9.
Apriori算法是挖掘布尔关联规则频繁项集的最有影响的数据挖掘算法之一,但由于数据挖掘本身决定其面临的是海量数据,因此在许多情况下会产生大量候选项集,从而严重影响挖掘的效率。本文提出一种简单有效的Apriori改进算法。  相似文献   

10.
提高频繁项集挖掘算法的效率一直是数据挖掘领域中关联规则挖掘研究的一个重点。针对数据挖掘的现状及关联规则算法的瓶颈问题,提出一种基于串与运算的关联规则挖掘算法,对该算法进行了阐述。最后对该算法的特点进行了总结并对关联规则挖掘的未来研究方向进行了展望。  相似文献   

11.
关联规则挖掘方法是Web挖掘的主要方法之一,本文在讨论了关联规则挖掘方法的一般知识后,重点研究了基于Web的兴趣关联规则挖掘技术.通过该技术可挖掘出访问者的兴趣爱好等信息,帮助网站经营者调整经营策略,提高网站的访问效率.  相似文献   

12.
一个改进项目的加权关联规则挖掘算法   总被引:1,自引:0,他引:1  
提出了一个改进的项目加权关联规则挖掘算法.该算法利用一个加权频繁项目集必须满足的加权支持度下界,对加权频繁候选项目集进行剪枝,该下界计算简便,可以减少挖掘的计算量.理论分析和实验表明本算法和MINWAL(W)相比,具有生成候选集数量少、挖掘效率高等特点,特别在项目权值相差不大时,本算法的优势更明显.  相似文献   

13.
针对并行关联规则挖掘算法不能有效的解决负载平衡的问题,在CD算法的基础上,介绍了一种基于动态数据集划分的并行关联规则挖掘算法.它根据各个节点的反馈来决定向每个节点分配的数据集大小.与静态的数据集划分相比,它能更好地实现负载平衡,提高并行数据挖掘的效率.  相似文献   

14.
基于chi square检验、有趣度及信息增益理论,给出一种挖掘优化关联规则的算法.该算法将冗余的规则分为:一规则缺乏统计相关性,二规则不满足"新奇"的要求.实验结果表明,该算法可有效去除冗余规则,提高挖掘效率.  相似文献   

15.
对Web日志数据进行收集、预处理、划分事务并产生具备分类关联规则挖掘条件事务集,然后采用矩阵算法挖掘事务集中的关联规则,并利用关联规则构造分类器来对Web用户进行分类,同时对矩阵算法进行了改进.实验表明此方法是有效的.  相似文献   

16.
基于改进遗传算法的多维关联规则挖掘方法及应用   总被引:1,自引:1,他引:1  
对遗传算法进行改进,并应用于多维关联规则挖掘中.在该算法中提出了一种基于免疫机制的新选择策略,并引入随机数,采用自适应方法随机动态选取交叉和变异概率.这种新算法不仅有效地抑制了早熟收敛现象,而且大大提高了搜索效率.  相似文献   

17.
增量式更新算法能充分利用已挖掘出的知识来提高挖掘效率,是数据挖掘高效算法中的一个主要方向.分析了典型的关联规则增量式更新算法波折法FUP算法的不足,提出了一种改进的关联规则增量式更新算法,新算法极大地降低了存储空间和挖掘时间需求,从而提高了整个关联规则挖掘的效率.  相似文献   

18.
基于Apriori数据挖掘算法研究   总被引:3,自引:0,他引:3  
关联规则是从数据集中识别出频繁出现的属性值集,然后利用这些频繁集创建描述关联关系的规则过程.在分析经典关联规则挖掘算法的基础上,讨论了经典的Apriori算法,并提出改进的Apriori关联规则算法,对算法进行了实验数据的算法性能分析及运行时间对比.结果表明,改进的算法在运行速度和挖掘性能上都较经典的Apriori算法都有显著提高.  相似文献   

19.
传统的关联规则并行挖掘算法中存在着产生大量的候选项集和通信量高的缺点,本文在分析已有并行挖掘关联规则算法的优缺点的基础上,提出了一个效率较高的并行优化关联规则挖掘算法EPMAR(Efficient Parallel Mining Association Rules),并与其它相应的算法进行了比较.实验结果证明:算法EPMAR是有效的,具有一定的扩展性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号