首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《应用陶瓷进展》2013,112(6):355-361
Abstract

Abstract

Silicon nitride decomposes before it can melt, and so thermal spraying of pure silicon nitride powder is impracticable. To address this difficulty, feedstock powder for plasma spray deposition has been developed in which each particle is a composite of silicon nitride in a low temperature borosilicate glass matrix. The research showed that the silicon nitride did not decompose in the plasma because the low thermal conductivity of the glass matrix ensured a low heat transfer rate and the particle temperature remaining below the decomposition temperature. The coating density initially increased with plasma arc power because of increasing splat flow but then declined at high power levels owing to decomposition of the glass matrix. The silicon nitride dispersion substantially reduced the splat flow, particularly near the maximum packing fraction, but also had the beneficial effect of restricting crack propagation, resulting in an optimum content for wear resistance of 30?vol.-% silicon nitride.  相似文献   

2.
《Ceramics International》2019,45(14):16982-16991
In powder injection molding process, it is important to analyze the rheological and thermal debinding behaviors of feedstock, because they can directly affect the final quality of products. Therefore, for the silicon nitride based feedstocks, the rheological and thermal debinding behaviors were investigated and compared between feedstocks prepared with the combination of two types of powders and sintering aid ratios. At first, the optimal solids loading for each feedstock was determined based on the results of the torque rheometer experiment. The viscosity of the feedstocks was measured using the capillary rheometer, and rheological properties were evaluated with the Power Law-Arrhenius model. Silicon nitride (JPN) feedstock with 5 wt% yttria and 2 wt% alumina (JPN+5Y2A) had the highest moldability index among all feedstocks. The powders with sintering aid ratio of 5 wt% yttria and 2 wt% alumina made the feedstocks have a high moldability index. Thermogravimetric experiment was also performed to analyze the pyrolysis behavior of the feedstocks, and the apparent activation energies for each feedstock were obtained using Kissinger method with the thermogravimetric analysis results. Based on the results, the master decomposition curve (MDC) was developed, and the utility of MDC for optimizing the thermal debinding process was verified.  相似文献   

3.
Silicon nitride for engineering applications is densified by liquid phase sintering using oxide additives such as yttria and alumina. The oxynitride liquid remains as an intergranular glass. This paper provides a review of microstructural development in silicon nitride, grain boundary oxynitride glasses and effects of chemistry on properties. Nitrogen increases Tg, viscosities, elastic moduli and microhardness. These property changes are compared with known effects of grain boundary glass chemistry in silicon nitride ceramics where significant improvements in fracture resistance of silicon nitride can be achieved by tailoring the intergranular glass chemistry.Crystallisation of the grain boundary Y–Si–Al–O–N glass phase can improve properties. Nucleation and crystallisation of a Y–Si–Al–O–N glass, similar to that found in grain boundaries of silicon nitride densified with yttria and alumina, can be optimised to form different Y-disilicate polymorphs at different temperatures. One solution to provide a single disilicate phase over a range of temperatures is discussed.  相似文献   

4.
Silicon powders with different medium sizes (114 μm, 79 μm and 31 μm, respectively) were used to fabricate coatings by air plasma spraying. The velocity and temperature of in-flight silicon particles during plasma spraying were determined. The composition and microstructure of the coatings were characterized and some physical properties of the coatings were measured. The obtained results showed that the size of silicon particles had great influence on their velocity and temperature in plasma flame. The oxidation of silicon particles in the spraying process was observed and is higher for particles of smaller sizes. Areas of silicon oxide in micrometer size are embedded and randomly distributed in the coating. The surface roughness and void content of silicon coatings increase with an increase in the particle size of the powders. The microhardness and oxygen content of coatings decrease with an increase in the particle size. However, the size of silicon particles has little impact on the deposition efficiency of silicon under the same deposition conditions.  相似文献   

5.
The focus of this study is the amorphous phase formation in the alumina–yttria stabilized zirconia composite coatings during thermal spray deposition. The investigated processes include conventional and suspension plasma spraying. The focus of this paper is on suspension spraying, while making a comparison of the two processes. Through the study of the in-flight collected particles and coatings produced from the two processes, the comparison of fragmentation, melting and mixing phenomena became possible. Scanning electron microscopy, differential scanning calorimetry and X-ray diffractometric studies helped better understanding of the formation and the nature of amorphous and crystalline phases within the as-sprayed coatings. The results support the importance of melting and mixing phenomena during spraying on the amorphous phase formation, so that longer exposure at high temperature (lower in-flight particle velocity) results in higher amorphous contents due to more complete melting and mixing. The comparison of the atmospheric and suspension plasma spray methods presents several similarities in terms of melting and mixing behaviour and the resulting phases. The two methods are, however, different in fragmentation and the eventual crystallite sizes. The formation of crystalline supersaturated solid solutions of alumina and zirconia in SPS coatings is confirmed.  相似文献   

6.
The nanostructured La2Zr2O7 (LZ) feedstock with high density, suitable size distribution and nearly spherical morphology which can be used for plasma spraying was prepared by spray drying in this study. The spray drying process was discussed. In addition, the formation mechanism of feedstock with hollow shell structure was discussed by finite element method in this paper. The double ceramic layer (DCL) LZ/YSZ (yttria stabilized zirconia) thermal barrier coatings were prepared using the as prepared LZ feedstock. The average grain size computed by Scherrer formulation, the observation of powder size by Transmission Electron Microscope (TEM) and “single splat” deposition experiment indicate that the as prepared LZ feedstock is nanostructured feedstock.  相似文献   

7.
Dry sliding wear tests on 5 wt.% copper oxide doped yttria stabilized zirconia polycrystals (CuO–TZP) composite have been performed against alumina, zirconia and silicon nitride countersurfaces at 600 °C. The influences of load and countersurface materials on the tribological performance of this composite have been studied. The friction and wear test results indicate a low coefficient of friction and specific wear rate for alumina and zirconia countersurfaces at F = 1 N load (maximum Hertzian pressure ~0.5 GPa). Examination of the worn surfaces using scanning electron microscope/energy dispersive spectroscopy confirmed the presence of copper rich layer at the edge of wear scar on the alumina and zirconia countersurfaces. However, Si3N4 countersurface sliding against CuO–TZP shows a relatively higher coefficient of friction and higher wear at 1 N load condition. These results suggest that the countersurface material significantly affect the behavior of the third body and self-lubricating ability of the composite.  相似文献   

8.
《应用陶瓷进展》2013,112(2):95-100
Abstract

Photoluminescence piezospectroscopy (PLPS) has been used to determine residual stresses in sapphire, alumina in the yttria stablised zirconia (YSZ)/Al2O3 composite and alumina in thermal barrier coatings (TBCs). The TBC of YSZ containing 0·5?wt-% alumina has been produced using electron beam physical vapour deposition. The stress profile through the TBC thickness was measured using a depth sensing method. Reasonable residual stress profiles have been obtained using PLPS with the confocal system for all three material systems. Measurements of TBCs suggest that stress distribution in a TBC system is not uniform in general. However, uniform stress distribution has been found in some positions where damage in TBCs might occur.  相似文献   

9.
The microstructure of silicon nitride with aligned silicon nitride whisker seeds was examined by electron microscopy. Silicon nitride sintered with yttria and alumina showed a “core-rim” structure. A few grains of the sample sintered with yttria and alumina had more than one core within one grain. This was explained in terms of coalescence of the grains growing from separate cores. A boundary with small misfit was observed by TEM, also supporting the possibility of grain coalescence.  相似文献   

10.
《Ceramics International》2020,46(13):21190-21195
We present experimental results on the deposition of multi-layer heat-conducting coatings of aluminum oxide and aluminum nitride on silicon substrates. We estimate the time dependencies of the temperature increase for an uncoated substrate and for similar samples covered by this kind of multi-layer coating. The composition of the coatings and their thermal properties have been investigated.  相似文献   

11.
A sample representation of a gas turbine engine blade, consisting of a nickel superalloy substrate with a deposited thermal barrier coating (TBC), was covered with silicon nitride, Si3N4, as an impermeable layer using plasma enhanced chemical vapor deposition (PECVD). The silicon nitride layer was used to seal the topcoat of yttria-stabilized zirconia (YSZ) surface of the TBC to mitigate calcium–magnesium–aluminum–silicon oxide (CMAS) attack. CMAS testing was carried out on the covered and uncovered surfaces by melting a ratio of 25 mg/cm2 of CMAS powder onto the surface of each sample in a furnace at 1100°C for 1 h. The conformal surface reaction of the sealed layer confirmed no cracking or delamination at high temperatures. Scanning electron microscopy (SEM) micrographs confirmed that the surface of YSZ was successfully sealed. The new coating of silicon nitride was shown to be a viable solution and technique to significantly block CMAS infiltration in porous thermal barrier coatings.  相似文献   

12.
《Ceramics International》2022,48(4):4497-4504
Ag–C composite coating exhibits excellent electrical and thermal conductivities, good arc mobility, and low contact resistance, making it has a good prospect in switch contact of high voltage isolators. At present, the electro-deposition method is mainly used to prepare Ag/C composite coatings. However, the production efficiency of the electro-deposition method is low and the obtained coatings are thin. The electrical explosion spraying, due to its simplicity and high efficiency, has attracted significant attention in coating preparation. In this study, a new method that confines Ag and graphite powders in a tube for electrical explosion spraying was proposed. Powder electrical explosion spraying was used for preparing an Ag/C composite coating by employing a self-designed device. The heating behavior of the powder during exploding, macroscopic morphology, micromorphology, deposition efficiency, and thickness of the coatings, as well as the deposition behavior of the sprayed particles, were investigated. After a single spraying, a dense and uniform Ag/C composite coating was obtained at the charging voltage of 13 kV and a spray distance of 18 mm. The results show that the coating area is approximately 39.25 mm2, the coating thickness was 50 μm, and the deposition efficiency was 35%. the coatings have good adhesion with the substrate. the interface between the coating and the substrate appeared as an inter-diffusion of elements, which was typical of a metallurgical bonding interface. Graphite is evenly distributed in the coating. Furthermore, the underlying deposition behavior of the coating was carefully characterized.  相似文献   

13.
Metal oxide nanoparticles have been used as burning rate catalysts for ammonium perchlorate (AP) decomposition in composite solid propellants. Though most papers point to the efficiency of different sizes, shapes and compositions, the texture of the agglomerated particles plays an important role in the catalytic efficiency, but this aspect is not always discussed. In this paper, iron oxide and composite iron oxide/silica powders were synthesized in microemulsion systems and their effect on the decomposition of AP was investigated. X‐ray diffraction (XRD) analysis and Fourier transformed infrared spectroscopy (FT‐IR) showed that the synthesized powders have an amorphous to nanocrystalline pattern, with Fe2O3 composition. The use of different FT‐IR spectroscopic techniques – transmission, diffuse reflectance (DRIFT) and universal attenuated total reflectance (UATR) – allied to electron microscopy analysis allowed the characterization of the samples’ surface, indicating that silicon oxide forms a thick matrix that covers the iron oxide nanoparticles. Adsorption of N2, light scattering and electron microscopy pointed that all samples are formed by mesoporous agglomerated nanoparticles containing micropores indicating that silicon oxide forms a thick matrix that covers the iron oxide nanoparticles. Adsorption of N2, pointed that all samples show different microstructures and light scattering indicated results refer to agglomerated particles. Finally, the catalytic effect of the samples on the decomposition of AP was evaluated by thermogravimetric analysis coupled to differential thermal analysis (TG/DTA), showing that only the high temperature decomposition step of AP was affected by the catalyst, shifting to lower temperatures the higher the surface area of the synthesized iron oxide sample, regardless of the presence of the silica matrix.  相似文献   

14.
Mullite was fabricated by a process referred to as transient viscous sintering (TVS). Composite particles which consisted of inner cores of α-alumina and outer coatings of amorphous silica were used. Powder compacts prepared with these particles were viscously sintered to almost full density at relatively low temperatures (∼1300°C). Compacts were subsequently converted to dense, fine-grained mullite at higher temperatures (∼1500°C) by reaction between the alumina and silica. The TVS process was also used to fabricate mullite/zirconia/alumina, mullite/silicon carbide particle, and mullite/silicon carbide whisker composites. Densification was enhanced compared with other recent studies of sintering of mullite-based composites. This was attributed to three factors: viscous flow of the amorphous silica coating on the particles, avoidance of mullite formation until higher temperatures, and increased threshold concentration for the development of percolation networks.  相似文献   

15.
We have developed a novel combination of electrophoretic deposition (EPD), reaction bonding and low temperature sintering techniques for the fabrication of yttria stablised zirconia (YSZ)/alumina composite coatings on Fecralloys. A mixture of ethanol and acetylacetone solvent was found to be an effective medium for YSZ and aluminium particle suspension. With the particle size of YSZ and aluminium being significantly reduced during ball milling. By using the EPD process, uniform green form coatings containing YSZ and aluminium particles were produced on Fecralloys. After oxidation of aluminium at 500°C and sintering at 1200°C, a dense and adherent YSZ/Al2O3 coating was produced. The presence of aluminium in the green form coatings not only contribute to the bonding between the coating and the metal substrate, but also compensate for the volume shrinkage of the coatings during sintering by the volume expansion arising from oxidation of aluminium to alumina.  相似文献   

16.
In this work, Al2O3–13 wt% TiO2 submicron-nanostructured powders were deposited using atmospheric plasma spraying. The feedstocks were obtained by spray drying two starting suspensions of different solids content, prepared by adding nanosized TiO2 and submicron-sized Al2O3 powders to water. The spray-dried granules were heat-treated to reduce their porosity and the powders were fully characterised in both untreated and thermally treated state. Comparison with two commercial feedstocks was carried out. Characterisation allowed a temperature for the thermal treatment to be chosen on the basis of the sprayability of the feedstock and the preservation as much as possible of the submicron-sized structure of the unfired agglomerates.Optimisation of the deposition conditions enabled the reconstituted powders to be successfully deposited, yielding coatings that were well bonded to the substrate. The coating microstructure, characterised by SEM, was mostly formed by a matrix of fully molten particles where the presence of semi-molten feedstock agglomerates was also observed.Moreover, microhardness, toughness, adhesion and tribological behaviours were determined, and the impact of the granule characteristics on these properties was studied. It was found that changing the feedstock characteristics allows controlling the coating quality and properties. In general, good mechanical properties were obtained using a feedstock comprising a binary mixture of submicrometric Al2O3 and nanometric TiO2 particles in the spray-dried powder.  相似文献   

17.
Two types of hot-pressed silicon nitride, one having an amorphous grain-boundary phase (6 wt% yttria, 3 wt% alumina) and the other having a predominantly crystalline grain-boundary phase (8 wt% yttria, 1 wt% alumina), were tested on a split Hopkinson pressure bar with a momentum trap, such that, in each test, the sample was subjected to a single predefined stress pulse and then recovered without being subjected to any other loads. The specimens were loaded repeatedly with a triangular pulse of 3.2 GPa amplitude at a strain rate of approximately 400/s. The dynamic fatigue life of amorphous grain-boundary-phase silicon nitride was observed to be higher than that of the corresponding fatigue life of crystalline grain-boundary-phase silicon nitride. The difference in fatigue lives is correlated to the microstructural damage occurring in both materials.  相似文献   

18.
《Ceramics International》2022,48(6):7464-7474
Yttrium oxide was sprayed by a plasma torch using a coarse thermal spray powder, which must be in size range of tens of micrometers to ensure good penetration into the plasma stream. Thick coatings on steel substrates were produced with two sprays systems facilitating gas stabilized plasma (GSP) and hybrid water-argon stabilized plasma (WSP–H) techniques. Additionally, an ultra-fine yttrium oxide powder was sprayed from a suspension. Hybrid water-argon stabilized plasma system was used for this purpose. Markedly thinner compact coatings were produced this way. All three sorts of plasma sprayed deposits were studied by the same methods. Dielectric properties were studied in a broad range of frequencies and temperatures. The microstructure aspects as well as crystallite size were analyzed and discussed in relation to electrical properties. All coatings exhibited stable dielectric parameters versus changing frequency and temperature, comparable with literature values for various samples. Concerning sintered bulks, and especially their thermal stability of capacitance, the plasma sprayed coatings were slightly worse. However due to shape and size variability of the plasma spraying are yttria coatings prospective for technical applications.  相似文献   

19.
In a previous study, pseudoplastic deformation pits created by cavitation exposure were reported in silicon nitride and zirconia. In this research, further comparison of the size and number of pits between several silicon nitride and zirconia materials is carried out. The pits are larger and much more numerous in silicon nitride than in zirconia although silicon nitride is harder than zirconia. An explanation of this phenomenon is given. Also, in the previous study it was reported that apparently a partially stabilized zirconia with yttria oxide developed a delay in the phase transformation from tetragonal to monoclinic after being exposed to cavitation. In this research, further experiments related with this phase transformation delay are carried out. Also, the phase transformation is verified with X-ray diffraction analysis. It is concluded that the “activation” of the partial stabilized zirconia happens regardless of the oxide used to stabilize it.  相似文献   

20.
The preparation technique of the particulate composite materials in the alumina/YAG system was elaborated. Within alumina particles suspension yttria precursor was precipitated with ammonium carbonate. Drying and calcination at 600 °C resulted in the mixture of alumina and yttria particles, the latter being much finer than alumina particles. This mixture was additionally homogenized by short attrition milling in an aqueous suspension. Sintering of such powders results in the materials composed of YAG inclusions of sizes smaller than shown by alumina grains and evenly distributed within the matrix. YAG particles result from the reaction of Y2O3 with Al2O3 during heat treatment. YAG inclusions limit effectively grain growth of the alumina matrix. Hardness, fracture toughness, strength, Young modulus and wear susceptibility of composites and pure alumina were measured. Composites show higher hardness and in some cases higher fracture toughness and wear resistance than pure alumina polycrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号