首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Predicting grinding burn using artificial neural networks   总被引:1,自引:0,他引:1  
This paper introduces a method for predicting grinding burn using artificial neural networks (ANN). First, the way to model grinding burn via ANN is presented. Then, as an example, the prediction of grinding burn of ultra-strength steel 300M via ANN is given. Very promising results were obtained.  相似文献   

3.
In this paper a new zero order method of structural shape optimization, in which material shrinks or grows perpendicular to the design boundary, has been proposed in order to satisfy fully stressed design criteria. To avoid mesh distortion that results in undesirable shape, design element concept and for nodal movement and convergence checking, fuzzy set theory have been used. To accelerate the convergence, artificial neural networks are employed. The proposed approach, named as GSN technique, has been incorporated in a FORTRAN software GSOANN. Using this software shape optimization of four structures are carried out. It is demonstrated that proposed technique overcomes most of the shortcomings of mundane zero order methods.  相似文献   

4.
Neural‐network computational modules have recently gained recognition as an unconventional and useful tool for RF and microwave modeling and design. Neural networks can be trained to learn the behavior of passive/active components/circuits. This work describes the fundamental concepts in this emerging area aimed at teaching RF/microwave engineers what neural networks are, why they are useful, when they can be used, and how to use them to model microstrip patch antenna. This work studies in‐depth different designs and analysis methods of microstrip patch antenna using artificial neural‐network and different network structure are also described from the RF/microwave designer's perspective. This article also illustrates two examples of microstrip antenna design and validating the utility of ANN in the area of microstrip antenna design. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

5.
In the context of recommendation systems, metadata information from reviews written for businesses has rarely been considered in traditional systems developed using content-based and collaborative filtering approaches. Collaborative filtering and content-based filtering are popular memory-based methods for recommending new products to the users but suffer from some limitations and fail to provide effective recommendations in many situations. In this paper, we present a deep learning neural network framework that utilizes reviews in addition to content-based features to generate model based predictions for the business-user combinations. We show that a set of content and collaborative features allows for the development of a neural network model with the goal of minimizing logloss and rating misclassification error using stochastic gradient descent optimization algorithm. We empirically show that the hybrid approach is a very promising solution when compared to standalone memory-based collaborative filtering method.  相似文献   

6.
In this paper, different neural network-based solutions to the contingency analysis problem are presented. Contingency analysis is examined from two perspectives: as a functional approximation problem obtaining a numerical evaluation and ranking contingencies; and as a graphical monitoring problem, obtaining an easy visualization system of the relative severity of the contingencies. For the functional evaluation problem, we analyze the use of different supervised feed-forward artificial neural networks (multilayer perceptron and radial basis function networks). The proposed systems produce a very accurate evaluation and ranking, and so present a high applicability. For the graphical monitoring problem, unsupervised artificial neural networks such as self-organizing maps by Kohonen have been used. This solution allows both a rapid, easy and simultaneous visualization of the severity level of the complete contingency set. The proposed solutions avoid the main drawbacks of previous neural network approaches to this problem, which are explicitly analyzed here.  相似文献   

7.
Robust radar target classifier using artificial neural networks   总被引:3,自引:0,他引:3  
In this paper an artificial neural network (ANN) based radar target classifier is presented, and its performance is compared with that of a conventional minimum distance classifier. Radar returns from realistic aircraft are synthesized using a thin wire time domain electromagnetic code. The time varying backscattered electric field from each target is processed using both a conventional scheme and an ANN-based scheme for classification purposes. It is found that a multilayer feedforward ANN, trained using a backpropagation learning algorithm, provides a higher percentage of successful classification than the conventional scheme. The performance of the ANN is found to be particularly attractive in an environment of low signal-to-noise ratio. The performance of both methods are also compared when a preemphasis filter is used to enhance the contributions from the high frequency poles in the target response.  相似文献   

8.
This study aims to predict the spatial distribution of tropical deforestation. Landsat images dated 1974, 1986 and 1991 were classified in order to generate digital deforestation maps which locate deforestation and forest persistence areas. The deforestation maps were overlaid with various spatial variables such as the proximity to roads and to settlements, forest fragmentation, elevation, slope and soil type to determine the relationship between deforestation and these explanatory variables. A multi-layer perceptron was trained in order to estimate the propensity to deforestation as a function of the explanatory variables and was used to develop deforestation risk assessment maps. The comparison of risk assessment map and actual deforestation indicates that the model was able to classify correctly 69% of the grid cells, for two categories: forest persistence versus deforestation. Artificial neural networks approach was found to have a great potential to predict land cover changes because it permits to develop complex, non-linear models.  相似文献   

9.
Product development is an important but also dynamic, lengthy and risky phase in the life of a new product. The optimisation of the product development phase through extensive knowledge of the involved procedures is believed to reduce the risks and improve the final product quality. Artificial intelligence and expert systems have been used successfully in optimising the development phase of some new products as it will be demonstrated by the first sections of this publication. This paper presents the first module of an expert system, a neural network architecture that could predict the reliability performance of a vehicle at later stages of its life by using only information from a first inspection after the vehicle’s prototype production. The paper demonstrates how a tool like neural networks can be designed and optimised for use in reliability performance predictions. Also, this paper presents an optimisation methodology that enabled the neural network to deal with the limited amount of available training data, common during new product development, and to finally achieve acceptable prediction performance with small error. A case example is presented to demonstrate the methodology.  相似文献   

10.
There are a vast number of complex, interrelated processes influencing urban stormwater quality. However, the lack of measured fundamental variables prevents the construction of process-based models. Furthermore, hybrid models such as the buildup-washoff models are generally crude simplifications of reality. This has created the need for statistical models, capable of making use of the readily accessible data. In this paper, artificial neural networks (ANN) were used to predict stormwater quality at urbanized catchments located throughout the United States. Five constituents were analysed: chemical oxygen demand (COD), lead (Pb), suspended solids (SS), total Kjeldhal nitrogen (TKN) and total phosphorus (TP). Multiple linear regression equations were initially constructed upon logarithmically transformed data. Input variables were primarily selected using a stepwise regression approach, combined with process knowledge. Variables found significant in the regression models were then used to construct ANN models. Other important network parameters such as learning rate, momentum and the number of hidden nodes were optimized using a trial and error approach. The final ANN models were then compared with the multiple linear regression models. In summary, ANN models were generally less accurate than the regression models and more time consuming to construct. This infers that ANN models are not more applicable than regression models when predicting urban stormwater quality.  相似文献   

11.
Kyung-Joong  Sung-Bae 《Neurocomputing》2008,71(7-9):1604-1618
Recently, many researchers have designed neural network architectures with evolutionary algorithms but most of them have used only the fittest solution of the last generation. To better exploit information, an ensemble of individuals is a more promising choice because information that is derived from combining a set of classifiers might produce higher accuracy than merely using the information from the best classifier among them. One of the major factors for optimum accuracy is the diversity of the classifier set. In this paper, we present a method of generating diverse evolutionary neural networks through fitness sharing and then combining these networks by the behavior knowledge space method. Fitness sharing that shares resources if the distance between the individuals is smaller than the sharing radius is a representative speciation method, which produces diverse results than standard evolutionary algorithms that converge to only one solution. Especially, the proposed method calculates the distance between the individuals using average output, Pearson correlation and modified Kullback–Leibler entropy to enhance fitness sharing performance. In experiments with Australian credit card assessment, breast cancer, and diabetes in the UCI database, the proposed method performed better than not only the non-speciation method but also better than previously published methods.  相似文献   

12.
Abstract

Abstract. Artificial neural networks have been used recently for speech and character recognition. Their application for the classification of remotely-sensed images is reported in this Letter. Remotely sensed image data are usually large in size and spectral overlaps among classes of ground objects are common. This results in low convergence performance of the Back-Propagation Algorithm in a neural network classifier. A Blocked Back-Propagation (BB-P) algorithm was proposed arid described in this Letter. It improved convergence performance and classification accuracy.  相似文献   

13.
Due to a potential to cause damage to machinery and structures and cause injuries to personnel, flyrock is the most dangerous adverse effect of blasting operations. Because of that, it is of primary importance to predict flyrock events and maximum range of flyrock fragments in order to define safety limits and secure the perimeter. There are various models for flyrock range prediction, and most of them rely on proper calculations of flyrock launch velocity. However, a unique and universally applicable model of launch velocity prediction still does not exist. Work presented in this article is a concept of adaptive system application for the prediction of flyrock launch velocities. It shows the principles of input data selection, acquisition and processing and presents the principles of design, training, validation and verification of applied artificial neural network.  相似文献   

14.
We present a velocity model inversion approach using artificial neural networks (NN). We selected four aftershocks from the 2000 Tottori, Japan, earthquake located around station SMNH01 in order to determine a 1D nearby underground velocity model. An NN was trained independently for each earthquake-station profile. We generated many velocity models and computed their corresponding synthetic waveforms. The waveforms were presented to NN as input. Training consisted in associating each waveform to the corresponding velocity model. Once trained, the actual observed records of the four events were presented to the network to predict their velocity models. In that way, four 1D profiles were obtained individually for each of the events. Each model was tested by computing the synthetic waveforms for other events recorded at SMNH01 and at two other nearby stations: TTR007 and TTR009.  相似文献   

15.
A three-layer neural network model with a hidden recurrent layer is used to predict sulphur dioxide concentration and the predicted values are compared with the measured concentrations at three sites in Delhi. The Levenberg–Marquardt algorithm is used to train the network. The neural network is used to simulate the behaviour of the system. A multivariate regression model is also used for comparison with the results obtained by using the neural network model. The study results indicate that the neural network is able to give better predictions with less residual mean square error than those given by multivariate regression models.  相似文献   

16.
Knowledge-based artificial neural networks   总被引:25,自引:0,他引:25  
Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset information missing from the other source. By so doing, a hybrid learning system should learn more effectively than systems that use only one of the information sources. KBANN (Knowledge-Based Artificial Neural Networks) is a hybrid learning system built on top of connectionist learning techniques. It maps problem-specific “domain theories”, represented in propositional logic, into neural networks and then refines this reformulated knowledge using backpropagation. KBANN is evaluated by extensive empirical tests on two problems from molecular biology. Among other results, these tests show that the networks created by KBANN generalize better than a wide variety of learning systems, as well as several techniques proposed by biologists.  相似文献   

17.
Neural networks that are integrated with rule-based systems having a knowledge base offer more capabilities than networks not integrated with such systems.  相似文献   

18.
In this article, methods for force distribution control of power grasp are developed. A power grasp is characterized by multiple points of contact between the object grasped and the surfaces of the fingers and palm. The grasp is highly stable because of form closure. However, modeling power grasps is difficult because of the resulting closed kinematic structure and the complexity of multiple contacts. The first method used to obtain the desired force distribution is based on linear programming. In particular, a model of the DIGITS grasping system, under development at The Ohio State University, is used, and constraint equations are formulated for force balance and actuator torque limits. Supervisory control of the desired forces at the contacts is achieved by prescribing a desired clinch level. The objective function is designed to achieve the desired clinch level, except in cases where the specified force is inadequate to stably hold the object. Although this method yields the desired force distribution, a second method based on artificial neural networks (ANNs) is developed to achieve constant-time solutions. Linear programming solutions are used to generate training data for a set of ANNs. Two techniques, modular networks and adaptive slopes, are also developed and employed in the training to improve the training time and accuracy of the ANNs. The results show that the ANNs learn the appropriate nonlinear mapping for the force distribution and provide stable grasp over a wide range of object sizes and clinch levels.  相似文献   

19.
The potential of using artificially simulated neural networks as intelligent, adaptive process-monitoring devices is discussed. The investigation is considered as a method for automatic, intelligent exception reporting for quality control applications. The technique is also compared with the conventional statistical approaches of principal component analysis and Kohonen's feature map. The applications of the technique in aerospace and manufacturing environments are presented and a possible extension of the method to incorporate a diagnostic function is discussed.Seconded from Cheltenham and Gloucester College of Higher Education as a Royal Society/SERC Research Fellow at Smith's Industries Aerospace and Defence Systems, Bishop's Cleeve, Cheltenham, UK.  相似文献   

20.
Cho JS  Ishida I  White H 《Neural computation》2011,23(5):1133-1186
Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号