首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an intelligent diagnosis system for diabetes on Linear Discriminant Analysis (LDA) and Adaptive Network Based Fuzzy Inference System (ANFIS): LDA-ANFIS is presented. The structure of this LDA-ANFIS intelligent system for diagnosis of diabetes is composed by two phases: The Linear Discriminant Analysis (LDA) phase and classificiation by using ANFIS classifier phase. In first phase, Linear Discriminant Analysis (LDA) is used to separate features variables between healthy and patient (diabetes) data. In second phase, the healthy and patient (diabetes) features obtained in first phase are given to inputs of ANFIS classifier. The correct diagnosis performance of the LDA-ANFIS intelligent system is calculated by using sensitivity and specificity analysis, classification accuracy and confusion matrix respectively. The classification accuracy of this LDA-ANFIS intelligent system was obtained about 84.61%.  相似文献   

2.
本文研究短时交通流预测。短时交通流预测是智能交通系统研究和实践的必要基础。本文提出和建立了一个短时交通流量预测模型,该模型利用一个基于规则的模糊系统,非线性地组合BP 神经网络模型和自适应卡尔曼滤波模型的交通流量预测结果,使得短时交通流量的预测结果更加准确可靠。该模型将传统方法和人工智能方法有机结合,一方面,利用人工神经网络强大的动态非线性映射能力,从而提高预测精度;另一方面,充分发挥卡尔曼滤波的静态线性稳定性,解决了单独使用BP神经网络进行预测时识别率不理想和可信度不高的问题。实验结果表明,本文提出的短时交通流预测模型具有较高的准确度和可靠度。  相似文献   

3.
在网络异常检测中,为了提高对异常状态的检测率,降低对正常状态的误判率,该文提出利用TSK模糊控制系统进行网络异常检测的新方法。在对TSK模糊控制系统的训练中采取梯度下降算法,充分发挥梯度下降局部细致搜索优势。实验数据采用KDDCUP99数据集,实验结果表明,基于梯度下降的模糊控制系统提高了异常检测的准确性。  相似文献   

4.
提出了基于T-S模型(Takagi-Sugeno型)的自适应神经网络模糊推理系统(AdaptiveNetwork-basedFuzzyInferenceSystem,ANFIS),介绍了高木—关野(Takagi-Sugeno型)模型结构和自适应神经网络模糊推理系统的结构和算法。该文采用减法聚类初始化模糊推理系统模型,把神经网络学习机制引入到逻辑推理中,使传统的逻辑推理不仅具有逻辑思维及语言表达能力而且具有自学习和联想能力,通过2型糖尿病症候数据库验证了ANFIS用于症候诊断的合理性和有效性。提示自适应神经网络模糊推理系统适合中医症候诊断的研究。  相似文献   

5.
针对已有的自适应神经模糊推理系统(ANFIS)在模糊规则后件表达上的缺陷和常见的模糊推理系统存在的主要问题,提出基于Choquet积分OWA的模糊推理系统(AggFIS),在模糊规则的后件表达、模糊算子的普适性和输入及规则的权重等方面有很大优势,它试图建立能够充分体现模糊逻辑本质和人类思维模式的模糊推理系统.根据模糊神经网的基本原理将AggFIS与前馈神经网络相结合,得到基于Choquet积分-OWA的自适应神经模糊推理系统(Agg-ANFIS),并将该模型应用于交通服务水平评价问题.实验结果证明,基于Choquet积分OWA的自适应神经模糊推理系统具有很好的非线性映射功能,它的本质是一类通用逼近器,为解决复杂系统的建模、分析及预测问题提供了有效的途径.  相似文献   

6.
Adaptive Neuro-Fuzzy Inference System for diagnosis risk in dengue patients   总被引:1,自引:0,他引:1  
Dengue disease is considered as one of the life threatening disease that has no vaccine to reduce its case fatality. In clinical practice the case fatality of dengue disease can be reduced to 1% if the dengue patients are hospitalized and prompt intravenous fluid therapy is administrated. Yet, it has been a great challenge to the physicians to decide whether to hospitalize the dengue patients or not due to the overlapping of the medical diagnosis criteria of the disease. Beside that physicians cannot decide to admit all patients because this will have major impact on health care cost saving due to the huge incident of dengue disease in the country. Even if the physicians managed to identify the critical cases to be hospitalized, most of the tools that have been used for monitoring those patients are invasive. Therefore, this study was conducted to develop a non-invasive accurate diagnostic system that can assist the physicians to diagnose the risk in dengue patients and therefore attain the correct decision. Bioelectrical Impedance Analysis measurements, Symptoms and Signs presented with dengue patients were incorporated with Adaptive Neuro-Fuzzy Inference System (ANFIS) to construct two diagnostic models. The first model was developed by systematically optimizing the initial ANFIS model parameters while the second model was developed by employing the subtractive clustering algorithm to optimize the initial ANFIS model parameters. The results showed that the ANFIS model based on subtractive clustering technique has superior performance compared with the other model. Overall diagnostic accuracy of the proposed system is 86.13% with 87.5% sensitivity and 86.7% specificity.  相似文献   

7.
提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据Gabriel图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部判别器分配最佳的权重系数.基于边界准则函数的融合算法,克服小样本问题,消除整体判别器的性能对样本分布的依赖性.在人工合成数据集以及人脸图像库上的实验证明本文算法的有效性.  相似文献   

8.
基于遗传算法的线性判别分析方法   总被引:2,自引:0,他引:2  
由于线性判别分析(Linear discriminant analysis,LDA)算法并不直接以训练误差作为目标函数,所以在Fisher准则不能代表最小训练误差情况下,LDA算法无法找到最优的分类子空间.本文针对这种情况,首先通过分析数据样本分布与LDA投影向量之间的关系,揭示了LDA投影向量与类间散布矩阵和类内散布矩阵特征值之间存在的关联,并以此提出一种基于遗传算法的LDA算法.该算法以子空间上的训练误差最小为目标,通过遗传算法调整LDA算法中类间矩阵特征值的大小,达到搜索最佳特征子空间的效果.通过模拟数据和真实数据的实验,表明这种方法的分类正确率比现有的线性子空间方法有明显提高.  相似文献   

9.
自适应模糊神经网络控制系统的研究   总被引:5,自引:6,他引:5  
自适应模糊神经网络控制器是由模糊控制和神经网络相结合构成,它不依赖被控对象的数学模型,并能自动产生模糊控制规则,又具有良好的自适应性,是目前受人们关注的课题。本文在对其分析的基础上又提出了卡尔曼滤波的学习算法,解决了原BP算法实时性差的问题,通过仿真实验说明了其优越性,并体现了模糊神经网络与最优控制相结合的思想。  相似文献   

10.
为了提高脑肿瘤分割的精确性和鲁棒性,提出一种结合卷积神经网络和模糊推理系统的全自动脑肿瘤MRI图像分割算法。首先,分别针对FLAIR和T2两种类型的单模态图像,构建适用于该类型图像的卷积神经网络。其次,针对FLAIR和T2图像,分别应用其对应的卷积神经网络模型进行预测,并将得到的预测概率通过非线性映射进行处理。最终,构建模糊推理系统,将FLAIR和T2图像经过非线性映射后的概率作为模糊推理系统的输入来判断该像素点是否属于肿瘤区域。实验结果表明,相比已有的脑肿瘤MRI图像分割算法,所提算法在分割精度上有了一定程度的提升。  相似文献   

11.
基于模糊推理的网络故障诊断研究   总被引:1,自引:0,他引:1  
雷军程 《计算机时代》2011,(12):11-12,15
设计了一个可用于网络故障诊断的基于模糊推理的专家系统模型。为了验证此模型的有效性,设计和实现了一个原型系统。该系统的测试结果显示,故障诊断和定位的准确性较高,可以满足校园网的故障诊断和维护的需要。  相似文献   

12.
Designing a fuzzy inference system (FIS) from data can be divided into two main phases: structure identification and parameter optimization. First, starting from a simple initial topology, the membership functions and system rules are defined as specific structures. Second, to speed up the convergence of the learning algorithm and lighten the oscillation, an improved descent method for FIS generation is developed. Furthermore, the convergence and the oscillation of the algorithm are systematically analyzed. Third, using the information obtained from the previous phase, it can be decided in which region of the input space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased. Consequently, this produces a new and more appropriate structure. Finally, the proposed method is applied to the problem of nonlinear function approximation.  相似文献   

13.
对于高维复杂模式识别问题,传统的线性判别分析通常首先采用PCA变换来降低模式的维数,然后再求取最优判别矢量集。然而PCA变换是以判别信息的损失为代价的,故无法保证所提取的特征是最优的。DCT变换具有能量聚集特性和变换的保距特性,文中正是基于此特性,提出一种新的基于DCT变换的线性判别分析方法,同时,也给出了一种在该模型下的最优判别矢量集的直接求解方法。实验表明,文中算法具有计算速度快、识别率高的优点。  相似文献   

14.
对于高维复杂模式识别问题,传统的线性判别分析通常首先采用PCA变换来降低模式的维数,然后再求取最优判别矢量集.然而PCA变换是以判别信息的损失为代价的,故无法保证所提取的特征是最优的.DCT变换具有能量聚集特性和变换的保距特性,文中正是基于此特性,提出一种新的基于DCT变换的线性判别分析方法,同时,也给出了一种在该模型下的最优判别矢量集的直接求解方法.实验表明,文中算法具有计算速度快、识别率高的优点.  相似文献   

15.
文章基于单体模糊神经网络(MFNN)对多重模糊推理的Mamdani方法进行了推广,得到的广义方法(简称G-Mamdani法)克服了原有方法的若干不足。文章采用了求解模糊关系方程的方法来确定网络的权值,依此新方法,实现了一个模糊推理机,其推理效果较好。这一方法为模糊专家系统和模糊控制系统等提供了一种新的有力的推理工具。  相似文献   

16.
寄生虫病是危害人类及动物健康的疾病之一。为了实现对寄生虫卵的自动识别,辅助临床检测,提出基于线性判别分析的寄生虫卵识别方法。采用结合形态学滤波和Otsu的方法分割得到寄生虫卵及其轮廓,提取形状特征和纹理特征作为特征向量集,并利用线性判别分析实现对寄生虫卵自动识别。实验结果表明,该方法对6种寄生虫卵的识别正确率达到90.70%。  相似文献   

17.
基于模糊推理的变步长LMS自适应滤波算法   总被引:5,自引:0,他引:5  
李明  杨成梧 《控制工程》2006,13(3):237-239
LMS算法是一种基于最速下降法的最小均方误差自适应滤波算法.为了提高LMS算法的收敛速度,依据模糊控制原理,推导出一种结构简单的步长与误差的非线性函数关系,进而得出一种新的变步长LMS自适应滤波算法(FVSLMS),该算法结构简单,易于实现.在理论上,根据万能逼近定理,用FVSLMS算法可以以任意精度逼近步长与误差的非线性函数关系,因此它可以作为以误差调节步长的变步长LMS算法的一类统一形式.最后,通过计算机仿真说明了FVSLMS算法具有较好的收敛性能.  相似文献   

18.
To improve the quality of life for the disabled and elderly, this paper develops an upper-limb, EMG-based robot control system to provide natural, intuitive manipulation for robot arm motions. Considering the non-stationary and nonlinear characteristics of the Electromyography (EMG) signals, especially when multi-DOF movements are involved, an empirical mode decomposition method is introduced to break down the EMG signals into a set of intrinsic mode functions, each of which represents different physical characteristics of muscular movement. We then integrate this new system with an initial point detection method previously proposed to establish the mapping between the EMG signals and corresponding robot arm movements in real-time. Meanwhile, as the selection of critical values in the initial point detection method is user-dependent, we employ the adaptive neuro-fuzzy inference system to find proper parameters that are better suited for individual users. Experiments are performed to demonstrate the effectiveness of the proposed upper-limb EMG-based robot control system.  相似文献   

19.
A robust adaptive fuzzy neural network (RAFNN) backstepping control system is proposed to control the position of an X-Y-Theta motion control stage using linear ultrasonic motors (LUSMs) to track various contours in this study. First, an X-Y-Theta motion control stage is introduced. Then, the single-axis dynamics of LUSM mechanism with the introduction of a lumped uncertainty, which includes cross-coupled interference and friction force, is derived. Moreover, a conventional backstepping approach is proposed to compensate the uncertainties occurred in the motion control system. Furthermore, to improve the control performance in the tracking of the reference contours, an RAFNN backstepping control system is proposed to remove the chattering phenomena caused by the sign function in the backstepping control law. In the proposed RAFNN backstepping control system, a Sugeno-type adaptive fuzzy neural network (SAFNN) is employed to estimate the lumped uncertainty directly and a compensator is utilized to confront the reconstructed error of the SAFNN. In addition, the motions at the X axis, Y axis, and Theta axis are controlled separately. The experimental results show that the contour tracking performance is significantly improved and the robustness to parameter variations, external disturbances, cross-coupled interference, and friction force can be obtained, as well using the proposed RAFNN backstepping control system.  相似文献   

20.
Nowadays, there are many persons, which suffer from thyroid diseases. Therefore, the correct diagnosis of these diseases are very important topic. In this study, a Generalized Discriminant Analysis and Wavelet Support Vector Machine System (GDA_WSVM) method for diagnosis of thyroid diseases is presented. This proposed system includes three phases. These are feature extraction – feature reduction phase, classification phase, and test of GDA_WSVM for correct diagnosis of thyroid diseases phase, respectively. The correct diagnosis performance of this GDA_WSVM expert system for diagnosis of thyroid diseases is estimated by using classification accuracy and confusion matrix methods, respectively. The classification accuracy of this expert system for diagnosis of thyroid diseases was obtained about 91.86%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号