首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

2.
Silicon nitride ceramics were pressureless sintered at low temperature using ternary sintering additives (TiO2, MgO and Y2O3), and the effects of sintering aids on thermal conductivity and mechanical properties were studied. TiO2–Y2O3–MgO sintering additives will react with the surface silica present on the silicon nitride particles to form a low melting temperature liquid phase which allows liquid phase sintering to occur and densification of the Si3N4. The highest flexural strength was 791(±20) MPa with 12 wt% additives sintered at 1780°C for 2 hours, comparable to the samples prepared by gas pressure sintering. Fracture toughness of all the specimens was higher than 7.2 MPa·m1/2 as the sintering temperature was increased to 1810°C. Thermal conductivity was improved by prolonging the dwelling time and adopting the annealing process. The highest thermal conductivity of 74 W/(m∙K) was achieved with 9 wt% sintering additives sintered at 1810°C with 4 hours holding followed by postannealing.  相似文献   

3.
The thermal conductivity of porous alumina ceramics prepared using different types of starch (potato, wheat, corn, and rice starch) as pore-forming agents is investigated from room temperature up to 500 °C. The temperature dependence measured for alumina ceramics of different porosity (in the range 6–47%) is fitted with second-order polynomials and 1/T-type relations, and compared to available literature data for dense alumina. It is found that the porosity dependence of the relative thermal conductivity kr = k/k0 is well described by a modified exponential relation of the form kr = exp(?1.5?/(1 ? ?)), where ? is the porosity. This finding is in agreement with other literature data and seems to indicate a common feature of all porous materials with microstructures resulting from fugitive pore-forming agents.  相似文献   

4.
The elastic properties, in particular the tensile modulus (Young's modulus) and Poisson ratio, of porous alumina, zirconia, and alumina–zirconia composite ceramics are studied using the resonance frequency method and the results compared with theoretical predictions. Starch is used as a pore-forming agent, so that the resulting microstructure is essentially of the matrix-inclusion type (with large bulk pores, connected by small throats when a percolation threshold is exceeded). It is found that for this type of microstructure the porosity dependence of the Young's modulus is significantly below the upper Hashin–Shtrikman bound and the power-law prediction; it corresponds well, however, to a recently proposed exponential relation and to an empirical volume-weighted average of the upper and lower Hashin–Shtrikman bounds. Results for all three types of ceramics indicate that – in the porosity range considered, i.e. up to approximately 50% – the Poisson ratio depends only slightly on porosity.  相似文献   

5.
Porous Si3N4 ceramics were fabricated by liquid-phase sintering with a Yb2O3 sintering additive, and the microstructure and mechanical properties of the ceramics were investigated, as a function of porosity. Low densification was achieved using a lower Yb2O3 additive content. Fibrous β-Si3N4 grains developed in the porous microstructure, and the grain morphology and size were affected by different sintering conditions. A high porosity, ∼40–60%, with β-Si3N4 grain development, was obtained by adjusting the additive content. Superior mechanical properties, as well as strain tolerance, were obtained for porous ceramics with a microstructure of fine, fibrous grains of a bimodal size distribution.  相似文献   

6.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

7.
Cenospheres (CS) are ceramic hollow microspheres and have been used to prepare composite foams for applications such as medical implants. However, its potential standalone application in the biomedical field is not fully explored. Herein, a susceptor-assisted microwave (SMW) sintering approach was used for producing CS foam scaffolds. Owing to the hybrid heating mechanism offered by the SMW process, sintering of the low-dielectric cenospheres was realized. We found that sintering was initiated at a lower temperature (1100 °C) compared to conventional heating (1250 °C) as reported in the literature, probably due to the lower activation energy required by SMW sintering. The physical and compositional properties of the sintered CS specimens were examined, and in vitro studies were performed. The as-fabricated CS foam possessed minimal effect on cell viability. Cells migrated and adhered well within the pores of the specimens, which indicates the potential of the CS as scaffold materials for cell engineering applications.  相似文献   

8.
《Ceramics International》2019,45(13):16470-16475
Porous SiC ceramics combine the properties of both SiC ceramics and porous materials. Herein, we design a facile method via pressureless sintering at relatively low temperatures for the synthesis of porous SiC ceramics. In the synthesis process, phosphoric acid was used as the sintering additive that reacted with SiO2 on the surface of SiC to form phosphates. The formed phosphates acted as a binder to connect the SiC particles. At a fixed temperature, the phosphates were partially decomposed and released a large amount of gas. This changed the pore structure of the ceramics and greatly improved their porosity. Finally, we obtained the porous SiC ceramics with high porosity and high strength. We investigate the effects of H3PO4 content on the phase composition, microstructure, porosity, mechanical properties and thermal expansion coefficient of the prepared porous SiC ceramics. It was shown that at the sintering temperature of 1200 °C, the highest porosity of the samples can reach 70.42% when the H3PO4 content is 25 wt%, and their bending strength reaches 36.11 MPa at room temperature when the H3PO4 content is 15 wt%. In addition, the porous SiC ceramics show good high-temperature stability with a bending strength of 42.05 MPa at 1000 °C and the thermal expansion coefficient of 3.966 × 10−6/°C.  相似文献   

9.
《Ceramics International》2017,43(13):10123-10129
Dense Si3N4 ceramic with BaO-Al2O3-SiO2 low temperature glass powders as sintering aids were prepared by pressureless sintering techniques at a relatively low temperature (1550 °C). Four kinds of glass powders of compositions melting at 1120 °C, 1300 °C, 1400 °C and 1500 °C, respectively, have been introduced as sintering aids. XRD results demonstrate that the BaO-Al2O3-SiO2 glass powders reacted with BaAl2O4 and converted into hexagonal celsian, which is a high-temperature phase with melting point of 1760 °C, so being beneficial to the high temperature properties of the materials. In addition, a portion of α-Si3N4 transformed to rod like β-Si3N4 with high aspect ratio as shown by XRD and SEM analysis. The bulk density increased with the rise of the melting temperature of the BaO-Al2O3-SiO2 glass powders, the sample obtained with the BaO-Al2O3-SiO2 glass powder melting at 1500 °C reaching a maximum density of 98.8%, an high flexural strength (373 MPa) and a fracture toughness (4.8 MPa m1/2).  相似文献   

10.
多孔氮化硅陶瓷由于其良好的弯曲强度、介电性能在航天航空领域得到了广泛应用。本文对多孔氮化硅陶瓷作为罩体材料的应用进行研究,对其作为防热承力材料进行温度场计算及试验研究,通过仿真及试验研究得出,多孔氮化硅陶瓷作为罩体材料耐热温度达到1400℃,热结构匹配及抗热震性能良好,能够满足某高速飞行器的使用要求。  相似文献   

11.
《Ceramics International》2017,43(11):8230-8235
Porous boron nitride/silicon oxynitride (BN/Si2N2O) composites were fabricated by pressureless sintering at 1650 °C with Li2O as sintering aid. The influence of Li2O and hexagonal boron nitride (h-BN) contents on phase, microstructure, mechanical, dielectric and thermal properties of the resulting porous BN/Si2N2O composites was investigated. Increasing Li2O content facilitated densification and decomposition of Si2N2O into Si3N4. The apparent porosity of the composites increases with the h-BN content increases and Si2N2O grain growth was restrained by the dispersed h-BN particles. The dielectric properties and thermal conductivities (TC) were affected mainly by porosity. Porous BN/Si2N2O ceramic composites with 4 mol% Li2O and 25 mol% BN exhibit both low dielectric constant (3.83) and dielectric loss tangent (0.008) with good mechanical and thermal performance, suggesting possible use as high-temperature structural/functional materials.  相似文献   

12.
《Ceramics International》2017,43(11):8284-8288
The silicon nitride ceramics with a beneficial combination of low dielectric losses and improved physical properties was fabricated by cold isostatic pressing and pressureless sintering. The fine grain microstructure, three-phase composition based on the β-SiAlON, the small amount of the glass phase and relatively small porosity promote a unique combination of a low thermal conductivity 14.51 W m−1 K−1 and low dielectric loss 1.4·10−3. A novel method is proposed to overcome the main drawbacks of the commercial and high-cost technologies.  相似文献   

13.
Aluminum nitride (AlN) ceramics with dense structure, high thermal conductivity, and exceptional mechanical properties were fabricated by pressureless sintering with a novel non-oxide sintering additive, samarium fluoride (SmF3). The results showed that the use of a moderate amount of SmF3 promoted significant densification of AlN and removed the oxygen impurity. This led to the formation of fine and isolated secondary phase that cleaned the grain boundaries and increased the contact between AlN grains, remarkably enhancing thermal conductivity. Furthermore, SmF3 also exhibited grain refinement and grain boundary strengthening effects similar to traditional sintering additive, samarium oxide (Sm2O3), leading to high mechanical properties in SmF3-doped AlN samples. The most optimal characteristics (thermal conductivity of 190.67 W·m−1·K−1, flexural strength of 403.86 ± 18.27 MPa, and fracture toughness of 3.71 ± 0.19 MPa·m1/2) were achieved in the AlN ceramic with 5 wt% SmF3.  相似文献   

14.
《Ceramics International》2022,48(20):30356-30366
Calcium hexaluminate (CA6) porous ceramics were prepared by gel-casting method, with α-Al2O3 and CaCO3 as raw materials and polymethyl methacrylate (PMMA) microspheres as pore-forming agent. The effects of the amount of pore-forming agent PMMA microspheres on the phase composition, bulk density, apparent porosity, flexural strength, microstructure, thermal shock stability and thermal conductivity of CA6 porous ceramics were systematically studied. The pores of CA6 porous ceramics are mainly formed by the burning loss of PMMA microspheres and the decomposition of organic matter. Adding an appropriate amount of PMMA microspheres as pore-forming agent has a positive effect on the thermal shock stability of CA6 porous ceramics. When the amount of pore-forming agent is 15 wt%, the volume density of CA6 porous ceramics is 1.33 g/cm3, the porosity is 63%, the flexural strength is 13.9 MPa, the thermal shock times can reach 9 times, and the thermal conductivity is 0.293 W/(m·K), which can meet the application in refractory, ceramics or high temperature cement industries.  相似文献   

15.
This work presents the preparation of porous alumina ceramics through the sacrificial phase method, using an eco-friendly material, namely waste coffee grounds, as a pore-forming agent. The effects of coffee grounds content in the green ceramic bodies on the linear and volumetric shrinkage, as well as the total and open porosity of the sintered product, were evaluated. The influence of the resulting porosity on mechanical properties of the prepared porous alumina was determined using Brazilian disk compression test for the determination of the indirect tensile strength of the prepared samples. Microstructure and pores morphology were characterized by scanning electron microscopy. Porosities in the range 35-54 vol% were achieved, by varying the coffee grounds content from 0 to 50 wt% in the green bodies. The indirect tensile strength of the final obtained porous alumina ceramic decreased accordingly from 57.4 MPa to 17.7 MPa.  相似文献   

16.
《Ceramics International》2019,45(11):13964-13970
A facile strategy for the fabrication of elongated mullite reinforced porous alumina ceramics (PACs) using carbonized rice husk (CRH) as pore-forming agent and silica source is reported for the first time. A large amount of elongated mullite is synthesized in pores due to the reaction of amorphous silica in CRH skeleton and alumina ceramic powder. Elongated mullite acts as the bridges between pore walls, enhancing the compressive strength of PACs. Furthermore, secondary pores from the intersection of elongated mullite is favor of decreasing of the thermal conductivity. High performance PAC with porosity of 74.3% has been fabricated by employing 25 wt% CRH, which possesses relatively low thermal conductivity of 0.189 W/(m•K) and ultra-high compressive strength of 45 MPa. Its comprehensive performance is much better than that of existing ceramic materials. Our findings present a facile, eco-friendly and effective approach to fabricate high performance PACs as the high-temperature thermal insulation materials.  相似文献   

17.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

18.
《Ceramics International》2023,49(8):11978-11988
A novel approach for preparing thermal insulation materials by microwave sintering of ferronickel slag (FNS) in the presence of fly ash cenosphere (FAC) was proposed and evaluated. The study showed that during microwave radiation, the contact interface between FNS and FAC would preferentially form magnesium iron chromate spinel and magnesium iron aluminate spinel particles as hot spots by absorbing microwave vigorously, promoting decomposition and transformation of the raw materials into the thermal insulation phases, mainly cordierite and enstatite. After sintering at 900 °C by microwave for only 20 min with the addition of 25 wt% FAC, a thermal insulation material with thermal conductivity of 0.41 W/(m·K), bulk density of 1.46 g/cm3, compressive strength of 30.72 MPa, water absorption of 21.07%, and linear shrinkage of 7.06% was obtained. Compared with the conventional sintering method, the temperature was reduced by 300 °C, with the sintering time shortened by 6 times. This study represents a good example for clean and efficient value-added utilization of FNS, FAC and other relavent solid wastes.  相似文献   

19.
Transparent YIG (Y3Fe5O12) ceramics are successfully synthesized by reactive sintering at normal pressure using γ-Fe2O3 and Y2O3 as starting materials. The grain size of the sintered YIG ceramics is ca. 10–15 µm. Residual pores are not observed on the surface of sample, but numerous residual pores are observed by infrared transmission microscopy. In-line transmittance of a commercially available high-quality YIG single crystal (thickness 1 mm) fabricated by the floating zone method is 75 % in the near to mid-infrared region, whereas the sample produced in this study shows an in-line transmittance of 71 % in the wavelength range above 1.5 µm.  相似文献   

20.
《Ceramics International》2022,48(17):25094-25102
The present work proposes a new method for fabrication partially stabilized porous zirconia ceramics using monoclinic zirconia as raw material, yttrium nitrate and magnesium compounds as pore-forming agents and stabilizers. Effects of different pore-forming agents, firing temperatures and firing time on properties of samples were investigated. Thermal decomposition of yttrium nitrate and magnesium compounds creates a large number of pores, and thus porous zirconia ceramics were fabricated. ZrO2 can be partially stabilized by Y2O3 and MgO derived from the precursors. The porous ZrO2 ceramics obtained by using Y(NO3)3·6H2O and 4MgCO3·Mg(OH)2·6H2O as pore-forming agents had relatively high stabilization ratio, uniform pores and high strength. The optimum firing temperature and firing time are 1400 °C and 3 h, and the samples have the stabilization ratio of 45.7%, high cold crushing strength (26 MPa), uniform pores, and apparent porosity is about 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号