首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Obstructive Sleep Apnoea Hypopnoea Syndrome (OSAH) means “cessation of breath” during the sleep hours and the sufferers often experience related changes in the electrical activity of the brain and heart. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for automatic detection of alterations in the human electroencephalogram (EEG) activities during hypopnoea episodes. Decision making was performed in two stages: feature extraction by computation of wavelet coefficients and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The EEG signals (pre and during hypopnoea) from three electrodes (C3, C4 and O2) were used as input patterns of the three ANFIS classifiers. To improve diagnostic accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on detecting any possible changes in the human EEG activity due to hypopnoea (mild case of cessation of breath) occurrences were drawn through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in detecting changes in the human EEG activity due to hypopnoea episodes.  相似文献   

2.
This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) model for estimation of vigilance level by using electroencephalogram (EEG) signals recorded during transition from wakefulness to sleep. The developed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. This study comprises of three stages. In the first stage, three types of EEG signals (alert signal, drowsy signal and sleep signal) were obtained from 30 healthy subjects. In the second stage, for feature extraction, obtained EEG signals were separated to its sub-bands using discrete wavelet transform (DWT). Then, entropy of each sub-band was calculated using Shannon entropy algorithm. In the third stage, the ANFIS was trained with the back-propagation gradient descent method in combination with least squares method. The extracted features of three types of EEG signals were used as input patterns of the three ANFIS classifiers. In order to improve estimation accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The performance of the ANFIS model was tested using the EEG data obtained from 12 healthy subjects that have not been used for the training. The results confirmed that the developed ANFIS classifier has potential for estimation of vigilance level by using EEG signals.  相似文献   

3.
In this study, a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of ophthalmic artery stenosis. The ANFIS was used to detect ophthalmic artery stenosis when two features, resistivity and pulsatility indices, defining changes of ophthalmic arterial Doppler waveforms were used as inputs. The ophthalmic arterial Doppler signals were recorded from 115 subjects, of whom 52 suffered from ophthalmic artery stenosis and the rest were healthy. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of ophthalmic artery stenosis were obtained through analysis of the ANFIS. The performances of the classifiers were evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS classifier has potential in detecting the ophthalmic artery stenosis.  相似文献   

4.
Abstract: A new approach based on an adaptive neuro‐fuzzy inference system (ANFIS) is presented for diagnosis of diabetes diseases. The Pima Indians diabetes data set contains records of patients with known diagnosis. The ANFIS classifiers learn how to differentiate a new case in the domain by being given a training set of such records. The ANFIS classifier is used to detect diabetes diseases when eight features defining diabetes indications are used as inputs. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. The conclusions concerning the impacts of features on the diagnosis of diabetes disease are obtained through analysis of the ANFIS. The performance of the ANFIS model is evaluated in terms of training performances and classification accuracies and the results confirm that the proposed ANFIS model has potential in detecting diabetes diseases.  相似文献   

5.
Abstract: In this study, ophthalmic arterial Doppler signals were obtained from 200 subjects, 100 of whom suffered from ocular Behcet disease while the rest were healthy subjects. An adaptive neuro-fuzzy inference system (ANFIS) was used to detect the presence of ocular Behcet disease. Spectral analysis of the ophthalmic arterial Doppler signals was performed by the fast Fourier transform method for determining the ANFIS inputs. The ANFIS was trained with a training set and tested with a testing set. All these data sets were obtained from ophthalmic arteries of healthy subjects and subjects suffering from ocular Behcet disease. Performance indicators and statistical measures were used for evaluating the ANFIS. The correct classification rate was 94% for healthy subjects and 90% for unhealthy subjects suffering from ocular Behcet disease. The classification results showed that the ANFIS was effective at detecting ophthalmic arterial Doppler signals from subjects with Behcet disease.  相似文献   

6.
Automatic discrimination of speech and music is an important tool in many multimedia applications. The paper presents an effective approach based on an adaptive network-based fuzzy inference system (ANFIS) for the classification stage required in a speech/music discrimination system. A new simple feature, called warped LPC-based spectral centroid (WLPC-SC), is also proposed. Comparison between WLPC-SC and the classical features proposed in the literature for audio classification is performed, aiming to assess the good discriminatory power of the proposed feature. The vector length used to describe the proposed psychoacoustic-based feature is reduced to a few statistical values (mean, variance and skewness). With the aim of increasing the classification accuracy percentage, the feature space is then transformed to a new feature space by LDA. The classification task is performed applying ANFIS to the features in the transformed space. To evaluate the performance of the ANFIS system for speech/music discrimination, comparison to other commonly used classifiers is reported. The classification results for different types of music and speech signals show the good discriminating power of the proposed approach.  相似文献   

7.
Recent developments of brain–computer interfaces (BCIs) bring forward some challenging problems to the machine learning community, of which classification of time-varying electrophysiological signals is a crucial one. Constructing adaptive classifiers is a promising approach to deal with this problem. In this paper, Bayesian classifiers with Gaussian mixture models (GMMs) are adopted to classify electroencephalogram (EEG) signals online. We propose to use the stochastic approximation method (SAM) as the specific gradient descent method for parameter update and systematically derive the instantaneous gradient formulas with respect to mean values and covariance matrices in the distributions of a GMM. With SAM, the parameters of mean values and covariance matrices embodied in the Bayesian classifiers can be simultaneously updated in a batch mode. The online simulation of EEG classification tasks in a BCI shows the effectiveness of the proposed SAM.  相似文献   

8.
The implementation of recurrent neural network (RNN) employing eigenvector methods is presented for classification of electroencephalogram (EEG) signals. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the EEG signals. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the EEG signals by the combination of eigenvector methods and the RNN. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the EEG signals and the RNN trained on these features achieved high classification accuracies.  相似文献   

9.
The motor unit action potentials (MUPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. Since recently there were different types of developments in computer-aided EMG equipment, different methodologies in the time domain and frequency domain has been followed for quantitative analysis of EMG signals. In this study, the usefulness of the different feature extraction methods for describing MUP morphology is investigated. Besides, soft computing techniques were presented for the classification of intramuscular EMG signals. The proposed method automatically classifies the EMG signals into normal, neurogenic or myopathic. Also, multilayer perceptron neural networks (MLPNN), dynamic fuzzy neural network (DFNN) and adaptive neuro-fuzzy inference system (ANFIS) based classifiers were compared in relation to their accuracy in the classification of EMG signals. Concerning the impacts of features on the EMG signal classification, different results were obtained through analysis of the soft computing techniques. The comparative analysis suggests that the ANFIS modelling is superior to the DFNN and MLPNN in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability.  相似文献   

10.
Adaptive Neuro-Fuzzy Inference System (ANFIS) is a robust method in solving non-linear classification by employing a human-readable interpretation manner. This paper verified a hybrid model, named WANFIS, where Whale Optimization Algorithm (WOA) was used for feature selection and tuning parameters of the ANFIS for land-cover classification. Hanoi, the capital of Vietnam, was selected as a case study, because of its complex surface morphology. The model was trained and validated with different data sets, which were subsets of the segmented objects from SPOT 7 satellite data (1.5 m in panchromatic and 6 m multiple spectral bands). The image segmentation was carried out by using PCI Geomatics software (evaluation version), and output objects with associated spectral, shape, and metric information were selected as input data to train and validate the proposed model. For accuracy assessment, the performance of the model was compared to several benchmarked classifiers by using standard statistical indicators such as Receiver Operator Characteristics, Area under ROC, Root Mean Square Error, Absolute Mean Error, Kappa index, and Overall accuracy. The results showed that WANFIS outperformed the other in almost all training data sets for both operations. It could be concluded that the examination of the classification model in different training data sizes is significant, and the proper determination of predictor variables and training sizes would improve the quality of classification of remotely sensed data.  相似文献   

11.
A new system for sleep multistage level scoring by employing extracted features from twenty five polysomnographic recording is presented. For the new system, an adaptive neuro-fuzzy inference system (ANFIS) is developed for each sleep stage. Initially, three types of electrophysiological signals including electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) were collected from twenty five healthy subjects. The input pattern used for training the ANFIS subsystem is a set of extracted features based on the entropy measure which characterize the recorded signals. Finally an output selection subsystem is utilized to provide the appropriate sleep stage according to the ANFIS stage subsystems outputs. The developed system was able to provide an acceptable estimation for six sleep stages with an average accuracy of about 76.43% which confirmed its ability for multistage sleep level scoring based on the extracted features from the EEG, EOG and EMG signals compared to other approaches.  相似文献   

12.
提出了一种基于自适应距离度量的最小距离分类器集成方法,给出了个体分类器的生成方法。首先用Bootstrap技术对训练样本集进行可重复采样,生成若干个子样本集,应用生成的子样本集建立自适应距离度量模型,根据建立的模型对子样本集进行训练,生成个体分类器。在集成中,将结果用相对多数投票法集成最终的结论。采用UCI标准数据集实验,将该方法与已有方法进行了性能比较,结果表明基于自适应距离度量的最小距离分类器集成是最有效的。  相似文献   

13.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   

14.
白帅帅  陈超  魏玮  代璐瑶  刘烨  邱爽  何晖光 《自动化学报》2023,49(10):2084-2093
基于脑电(Electroencephalogram, EEG)的谎言检测技术依赖于对事件相关电位(Event-related potential, ERP)的有效解码, 当前主要采用手工设计特征进行脑电分析. 近年来, 单试次脑电分类方法取得了长足进步, 其中端到端的脑电分类方法能够实现对脑电的自动特征提取和分类, 但在谎言检测中缺乏研究和应用, 同时存在无法在测谎场景下直接应用的问题. 本研究设计基于复合反应范式(Complex trial protocol, CTP)进行自我面孔信息识别任务的实验, 采集了18 名被试的脑电数据. 研究了不同端到端的单试次ERP分类方法在谎言检测中的应用, 同时针对单试次脑电解码方法无法直接实际应用的问题, 提出了一种类自举算法. 算法基于数据分布假设, 通过对比各类刺激图像被视为探针刺激时所训练模型的性能, 来推断真正的探针刺激. 实验结果表明, 在基于自我面孔信息的CTP的谎言预测中, 所提出的类自举法性能优于传统探针预测方法, 在仅使用少量脑电数据情况下, 可实现准确的谎言预测.  相似文献   

15.
Abstract: In this paper, the probabilistic neural network is presented for classification of electroencephalogram (EEG) signals. Decision making is performed in two stages: feature extraction by wavelet transform and classification using the classifiers trained on the extracted features. The purpose is to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrates that the wavelet coefficients obtained by the wavelet transform are features which represent the EEG signals well. The conclusions indicate that the probabilistic neural network trained on the wavelet coefficients achieves high classification accuracies (the total classification accuracy is 97.63%).  相似文献   

16.
In recent years, various physiological signal based rehabilitation systems have been developed for the physically disabled in which electroencephalographic (EEG) signal is one among them. The efficiency of such a system depends upon the signal processing and classification algorithms. In order to develop an EEG based rehabilitation or assistive system, it is necessary to develop an effective EEG signal processing algorithm. This paper proposes Stockwell transform (ST) based analysis of EEG dynamics during different mental tasks. EEG signals from Keirn and Aunon database were used in this study. Three classifiers were employed such as k-means nearest neighborhood (kNN), linear discriminant analysis (LDA) and support vector machine (SVM) to test the strength of the proposed features. Ten-fold cross validation method was used to demonstrate the consistency of the classification results. Using the proposed method, an average accuracy ranging between 84.72% and 98.95% was achieved for multi-class problems (five mental tasks).  相似文献   

17.
Diagnosing pain mechanisms is one of the main approaches to improve clinical treatments. Especially, the detection of existence and/or level of pain can be vital when verbal information is not present for instant for neonates, disabled persons, anesthetized patients and also animals. Various researches have been performed to locate and classify pain, however, no consistent result has been achieved. The aim of this study is to show a strict relation between electroencephalogram (EEG) signal features and perceptual pain levels and to clarify the relation of classified signal to pain origin. Cortical regions on scalp were assigned based on an evolutional method for optimized alignment of electrodes that improve the clinical monitoring results. The EEG signals were recorded during relax condition and variety of pain conditions. Specific spectral features which are studied to show consistency with dynamical characteristic of EEG signals were combined with non-linear features including approximate entropy and Lyapunov exponent to provide the feature vector. Evolutionary optimization method was used to reduce the features space dimension and computational costs. A hybrid adaptive network fuzzy inference system (ANFIS) and support vector machine (SVM) scheme was used for classification of pain levels. ANFIS optimizer is used to fine tune the non-linear alignment of kernels of SVM. The results show that pain levels can be differentiated with high accuracy and robustness even for few recording electrodes. This research verifies the hypothesis that electrical variations of brain patterns can be used for determination of pain levels. The proposed classification method provided up to 95% accuracy.  相似文献   

18.
In this study, the traffic accidents recognizing risk factors related to the environmental (climatological) conditions that are associated with motor vehicles accidents on the Konya-Afyonkarahisar highway with the aid of Geographical Information Systems (GIS) have been determined using the combination of K-means clustering (KMC)-based attribute weighting (KMCAW) and classifier algorithms including artificial neural network (ANN) and adaptive network-based fuzzy inference system (ANFIS). The dynamic segmentation process in ArcGIS9.0 from the traffic accident reports recorded by District Traffic Agency has identified the locations of the motor vehicle accidents. The attributes obtained from this system are day, temperature, humidity, weather conditions, and month of occurred traffic accidents. The traffic accident dataset comprises five attributes (day, temperature, humidity, weather conditions, and month of occurred traffic accidents) and 358 observations including 179 without accident and 179 with accident. The proposed comprises two stages. In the first stage, the all attributes of dataset have been weighted using KMCAW method. The aims of this weighting method are both to increase the classification performance of used classifier algorithm and to transform from linearly non-separable traffic accidents dataset to a linearly separable dataset. In the second stage, after weighting process, ANN and ANFIS classifier algorithms have been separately used to determine the case of traffic accidents as with accident or without accident. In order to evaluate the performance of proposed method, the classification accuracy, sensitivity, specificity and area under the ROC (Receiver Operating Characteristic) curves (AUC) values have been used. While ANN and ANFIS classifiers obtained the overall prediction accuracies of 53.93 and 38.76%, respectively, the combination of KMCAW and ANN and the combination of KMCAW and ANFIS achieved the overall prediction accuracies of 74.15 and 55.06% on the prediction of traffic accidents. The experimental results have demonstrated that the proposed attribute weighting method called KMCAW is a robust and effective data pre-processing method in the prediction of traffic accidents on Konya-Afyonkarahisar highway in Turkey.  相似文献   

19.
Training neural networks in distinguishing different emotions from physiological signals frequently involves fuzzy definitions of each affective state. In addition, manual design of classification tasks often uses sub-optimum classifier parameter settings, leading to average classification performance. In this study, an attempt to create a framework for multi-layered optimization of an ensemble of classifiers to maximize the system's ability to learn and classify affect, and to minimize human involvement in setting optimum parameters for the classification system is proposed. Using fuzzy adaptive resonance theory mapping (ARTMAP) as the classifier template, genetic algorithms (GAs) were employed to perform exhaustive search for the best combination of parameter settings for individual classifier performance. Speciation was implemented using subset selection of classification data attributes, as well as using an island model genetic algorithms method. Subsequently, the generated population of optimum classifier configurations was used as candidates to form an ensemble of classifiers. Another set of GAs were used to search for the combination of classifiers that would result in the best classification ensemble accuracy. The proposed methodology was tested using two affective data sets and was able to produce relatively small ensembles of fuzzy ARTMAPs with excellent affect recognition accuracy.  相似文献   

20.
Brain–Computer Interfaces (BCIs) based on Electroencephalograms (EEG) monitor mental activity with the ultimate objective of allowing people to communicate with computers only via their thoughts. Users must create precise cerebral activity patterns that the system uses as control signals to do this. A common activity used to elicit such signals is Motor Imagery (MI), in which certain signals are created in the sensorimotor cortex while imagining the movements. The three phases of the traditional EEG–BCI processing pipeline are preprocessing, feature extraction, and classification. We provide categorization advances and track performance gains in 4-class MI-based BCIs. In this study, 4-class MI events are produced via an illusory elevation of the left hand, right hand, feet, and tongue. Finally, a two-phase classification technique is provided with ANN classifiers being used in the first phase to discriminate between different pair-wise MI tasks. Secondly, an adaptive SVM classifier is used to assess the user's end task based on the weighted outputs of the classifiers. An adaptive classifier is one technique to maintain consistency in performance, reduce training time, and eliminate non-stationaries, all of which are required for efficient BCI performance. The suggested approach outperformed conventional two-stage classification algorithms on MI data, according to experimental findings. The average classification accuracy of this technique is 96% for datasets BCI competition IV 2a. This is a 4% improvement over the comparison approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号