共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper a switching fuzzy logic controller for mobile robots with a bounded curvature constraint is presented. The controller tracks piece-wise linear paths, which are an approximation of the feasible smooth reference path. The controller is constructed through the use of a map, which transforms the problem to a simpler one; namely the tracking of straight lines. This allows the use of an existing fuzzy tracker deployed in a previous work, and its simplification leading to a 70% rule reduction. Simulation results and a comparison analysis with existing trackers are also presented along with some stability considerations on the impulsive error dynamics which emerge. 相似文献
3.
A four-wheel steered mobile robot is fit for a higher power or improvement in the movement speed of a robot than a two-independent wheeled one. Since a steered mobile robot that slips very often cannot apply a popular dead-reckoning method using rotary encoders, it is desirable to use external sensors such as cameras. This paper describes a method to trace a straight line for four-wheel steered mobile robots using an image-based control method. Its controller is designed as a fuzzy controller and evaluated through some simulations and real robot. 相似文献
4.
分析了智能群体的决策机制,发现在智能群体决策过程中,个体粒子参与决策的权利根据个体的优劣程度是不同的,提出了在量子粒子群优化(QPSO)算法中引入线性权重算子进一步提高QPSO算法的搜索效率及优化性能。分析了移动机器人轨迹跟踪控制的滑模变结构控制器设计方法,并采用指数趋近律和幂次趋近律相结合的方法,设计了新的滑模跟踪控制律,使用PSO算法、QPSO算法和改进算法优化了滑模跟踪控制器中的参数,通过两个实例验证了优化后的跟踪控制器的设计效果;设计效果的分析和比较表明了设计的跟踪控制器能够控制机器人实现对既定轨迹的跟踪,仿真结果显示改进QPSO算法能够在轨迹跟踪控制器的参数优化中取得更好的优化效果。 相似文献
5.
Cassius Z. Resende Ricardo Carelli Mário Sarcinelli-Filho 《Control Engineering Practice》2013,21(10):1302-1309
This paper proposes a fuzzy controller for trajectory tracking with unicycle-like mobile robots. Such controller uses two Takagi–Sugeno (TS) fuzzy blocks to generate its gains. The controller is able to limit the velocity and control signals of the robot, and to reduce the errors arising from its dynamics as well. The stability of the developed controller is proven, using the theory of Lyapunov. Experimental results show that the use of the proposed controller is attractive in comparison with the use of a controller with fixed saturation function. 相似文献
6.
Janset Dasdemir 《International journal of control》2013,86(9):1822-1832
We solve the formation tracking control problem for mobile robots via linear control, under the assumption that each agent communicates only with one ‘leader’ robot and with one follower, hence forming a spanning-tree topology. We assume that the communication may be interrupted on intervals of time. As in the classical tracking control problem for non-holonomic systems, the swarm is driven by a fictitious robot which moves about freely and which is a leader to one robot only. Our control approach is decentralised and the control laws are linear with time-varying gains; in particular, this accounts for the case when position measurements may be lost over intervals of time. For both velocity-controlled and force-controlled systems, we establish uniform global exponential stability, hence consensus formation tracking, for the error system under a condition of persistency of excitation on the reference angular velocity of the virtual leader and on the control gains. 相似文献
7.
基于模糊遗传算法的移动机器人墙跟踪控制策略 总被引:1,自引:2,他引:1
针对传统模糊控制器在设计过程中存在的人为主观因素较多,隶属函数参数不变引起的控制器适应能力差等缺点,本文将遗传算法引入到移动机器人直墙跟踪的模糊控制器优化问题中,阐述了遗传算法用于离线方式寻优模糊控制器隶属函数参数的具体操作过程,如编码策略、适应度函数的确定、选择、交叉、变异等.最终经过仿真平台的验证,确定一组最优解,并在HEBUT-Ⅰ型智能移动机器人上进行试验,结果表明与传统模糊控制策略相比,该方法不但提高了响应速度,同时改善了跟踪精度. 相似文献
8.
以四轮移动机器人为研究对象,建立了机器人完整的数学模型,包括运动学模型、动力学模型以及驱动电机模型。在机器人数学模型的基础上,采用反步法的思想设计具有全局收敛特性的鲁棒轨迹跟踪控制器,设计中考虑了驱动电机模型使控制器更符合实际控制要求,并将其分解为运动学控制器、动力学控制器以及电机控制器三部分,降低了控制器设计的难度。构造了系统的李雅普诺夫函数,证明了该类型移动机器人在所得控制器作用下,能实现对给定轨迹的全局渐近追踪。仿真实验结果表明基于反步法的控制器是有效的。 相似文献
9.
非完整移动机器人的轨迹跟踪控制 总被引:13,自引:2,他引:13
讨论基于运动学模型的非完整移动机器人的轨迹跟踪控制问题。在一定的假设条件下实现了全局指数跟踪,该假设允许参考模型角速度和平移速度均趋于零,并将该方法推广到 动力学模型。仿真例子证明了该方法的有效性。 相似文献
10.
Chia-Ju Wu 《Journal of Intelligent and Robotic Systems》1994,11(3):209-221
A sensor-based fuzzy algorithm is proposed to navigate a mobile robot in a 2-dimensional unknown environment filled with stationary polygonal obstacles. When the robot is at the starting point, vertices of the obstacles that are visible from the robot are scanned by the sensors and the one with the highest priority is chosen. Here, priority is an output fuzzy variable whose value is determined by fuzzy rules. The robot is then navigated from the starting point to the chosen vertex along the line segment connecting these two points. Taking the chosen vertex as the new starting point, the next navigation decision is made. The navigation process will be repeated until the goal point is reached.In implementation of fuzzy rules, the ranges of fuzzy variables are parameters to be determined. In order to evaluate the effect of different range parameters on the navigation algorithm, the total traveling distance of the robot is defined as the performance index first. Then a learning mechanism, which is similar to the simulated annealing method in the neural network theory, is presented to find the optimal range parameters which minimize the performance index. Several simulation examples are included for illustration. 相似文献
11.
Gustavo Scaglia Andrés Rosales Lucia Quintero Vicente Mut Ravi Agarwal 《Control Engineering Practice》2010,18(3):318-329
This work presents a novel linear interpolation based methodology to design control algorithms for the trajectory tracking of mobile robotic systems. Particularly, a typical nonlinear multivariable system—a mobile robot—is analysed. The methodology is simple and can be applied to the design of a large class of control systems. Simulation and experimental results are presented and discussed, demonstrating the good performance of the proposed methodology. 相似文献
12.
13.
This paper discusses the problem of adaptive sliding mode trajectory tracking control for wheeled mobile robots in the presence of external disturbances and inertia uncertainties. A new fast nonsingular terminal sliding mode surface without any constraint is proposed, which not only avoids singularity, but also retains the advantages of sliding mode control. In order to implement the trajectory tracking mission, the error dynamic system is divided into a second-order subsystem and a third-order one. First, an adaptive fast nonsingular terminal sliding mode control law of the angular velocity is constructed for stabilising the second-order subsystem in finite time. Then, another adaptive fast nonsingular terminal sliding mode control law of the linear velocity is designed to guarantee the stability of the third-order subsystem. Finally, a simulation example is provided to demonstrate the validity of the proposed control scheme. 相似文献
14.
基于轨迹跟踪车式移动机器人编队控制 总被引:2,自引:0,他引:2
针对车式移动机器人的运动学模型特点, 提出一种基于轨迹跟踪多机器人编队控制方法. 首先利用编队结构参数确定队形, 根据编队轨迹和相关参数生成虚拟机器人, 把编队控制转化为跟随机器人对虚拟机器人的轨迹跟踪; 然后运用反步法构造车式移动机器人轨迹跟踪系统的Lyapunov 函数, 通过使该函数负定, 得到跟随机器人的轨迹跟踪控制器; 最后在Microsoft robotics developer studio 4 (MRDS4) 中搭建3D 仿真平台, 设计了3 组实验, 所得结果表明了所提出方法的有效性. 相似文献
15.
Pu-Sheng Tsai Li-Sheng Wang Fan-Ren Chang 《Robotics, IEEE Transactions on》2006,22(5):1055-1062
After exploring the structure of the dynamics derived by using the Appell equation, we propose a hierarchical tracking controller for a tri-wheeled mobile robot in this paper. With appropriately chosen privileged variables, the reduced equations are decoupled from the kinematic equations associated with the underlying nonholonomic constraints. This special character of the system makes it possible to separate the design into three levels: motion planning, kinematic, and dynamic. In the proposed scheme, a fuzzy inference engine in the kinematic level is used to update the desired trajectory computed in the motion-planning level. An adaptive sliding-mode controller is then adopted to track the new reference values of privileged variables in the dynamic level, which subsequently drives the nonprivileged variables. Simulation results show the effectiveness of such a tracking-control scheme, which concurrently takes kinematics and dynamics into consideration. All system variables can be tracked asymptotically to their desired values, which are assured by the skew-symmetric property of the Appell equation. 相似文献
16.
对含不确定性的移动机器人系统设计了路径跟踪模糊控制方法。该方法引入临时路径,使机器人先从初始位置出发沿临时路径行进,当移动到期望路径附近时,再让机器人跟踪期望路径。整个控制过程只需要一个模糊控制器,极大地减少了工作量,并引进积分环节以消除稳态误差。仿真和实验结果验证了该方法的有效性。 相似文献
17.
Bong Seok Park Jin Bae Park Yoon Ho Choi 《International Journal of Control, Automation and Systems》2011,9(3):534-541
In this paper, an adaptive observer-based trajectory tracking problem is solved for nonholonomic mobile robots with uncertainties.
An adaptive observer is first developed to estimate the unmeasured velocities of a mobile robot with model uncertainties.
Using the designed observer and the backstepping technique, a trajectory tracking controller is designed to generate the torque
as an input. Using Lyapunov stability analysis, we prove that the closed-loop system is asymptotically stable with respect
to the estimation errors and tracking errors. Finally, the simulation results are presented to validate the performance and
robustness of the proposed control system against uncertainties. 相似文献
18.
In this paper, the problem concerning how to coordinate the contributions from concurrent controllers, when controlling mobile robots, is investigated. It is shown how a behavior based control system for autonomous robots can be modeled as a hybrid automaton, where each node corresponds to a distinct robot behavior. This type of construction gives rise to chattering executions, but it is shown how regularized automata can be used to solve this problem. As an illustration, the obstacle-negotiation problem is solved by using a combination of a robust path-following behavior and a reactive obstacle-avoidance behavior that move the robot around a given obstacle at a predefined safety distance. 相似文献
19.
K.D. Do 《Robotics and Autonomous Systems》2013,61(8):775-784
This paper presents a design of bounded controllers with a predetermined bound for global path tracking control of unicycle-type mobile robots at the torque level. A new one-step ahead backstepping method is first introduced. The heading angle and linear velocity of the robots are then considered as immediate controls to force the position of the robots to globally and asymptotically track its reference path. These immediate controls are designed based on the one-step ahead backstepping method to yield bounded control laws. Next, the one-step ahead backstepping method is applied again to design bounded control torques of the robots with a pre-specified bound. The proposed control design ensures global asymptotical and local exponential convergence of the position and orientation tracking errors to zero, and bounded torques driving the robots. Experimental results on a Khepera mobile robot verify the proposed control controller. 相似文献