首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用自适应小波包分解的混合储能平抑风电波动控制策略   总被引:5,自引:0,他引:5  
采用蓄电池和超级电容构建混合储能系统以平抑风电场输出功率波动,实现风电平滑并网。首先,针对不同风电出力场景下风电功率的波动特性,结合风电并网波动标准和混合储能系统性能特点,实现风电功率的自适应小波包分解和储能初级功率分配,得到风电并网功率和混合储能初级功率指令;其次,在混合储能系统内部,根据超级电容的荷电状态,利用模糊优化控制对蓄电池和超级电容的功率指令进行二次修正,得到优化后的混合储能功率分配指令。算例分析表明,所提策略能够自适应地实现风电功率的最优分解和合理分配,确保混合储能荷电状态工作在合理区间,有效改善风电输出功率波动平抑效果,保证混合储能系统长期稳定运行。  相似文献   

2.
一种适用于混合储能系统的控制策略   总被引:11,自引:0,他引:11  
为最大化地降低可再生能源输出功率的波动程度,优化混合储能系统的运行,采用时间常数随储能系统荷电状态变化的低通滤波算法确定目标功率值;根据蓄电池和超级电容的荷电状态,采用模糊控制理论将超出目标值的功率偏差在两种储能介质之间进行分配;当超级电容电量充足时,由其独立补偿功率偏差值,以减少蓄电池的充放电次数。算例分析表明,所提控制策略能够有效地平抑可再生能源功率波动,避免储能介质出现荷电状态越限现象,达到延长蓄电池使用寿命的目的。  相似文献   

3.
针对间歇性电源输出功率波动大、随机性强的特点,提出了一种基于混合储能平抑间歇性电源功率波动的控制方法。该方法将功率密度大、动态响应速度快的超级电容作为系统缓冲储能优先对功率波动进行平抑,通过蓄电池组的功率调节以防止超级电容电压越限;将蓄电池组分为独立的充电组和放电组分别控制,最大限度的减少蓄电池组循环充放电次数;通过基于荷电状态的蓄电池充电组和放电组相互调整规则以避免蓄电池组深度充放电,延长其使用寿命。仿真验证了该方法的有效性。  相似文献   

4.
为降低大容量分布式并网光伏的影响,对共直流母线的光伏-混合储能发电系统及其优化控制方案进行了研究。首先,分析了共直流母线并网光伏电站结构。然后,综合考虑公共连接点处电能质量和储能元件特性,设计了基于双重滤波的协调控制策略。第一重滤波根据蓄电池荷电状态自适应调节滤波器参数,调节混合储能输出功率,平抑并网光伏输出功率波动。第二重滤波根据超级电容荷电状态自适应调节滤波参数,对两种储能介质进行功率分配,优先采用超级电容补偿功率偏差,减少蓄电池充放电次数,提升混合储能技术经济性。最后,搭建了基于ABB SymphonyTM Plus和Opal-RTLAB的硬件在环实验平台。实验证实了上述方法的有效性。  相似文献   

5.
针对风电出力的随机性、波动性对电力系统的安全稳定运行产生了极大影响,提出了基于自适应滑动平均算法与集合经验模态分解相结合的混合储能系统平滑风电出力波动方法。首先利用自适应滑动平均算法将风电输出功率分解,得到满足并网条件的并网功率和混合储能功率;其次将混合储能功率进行集合经验模态分解,得到一系列频率由高到低依次排列的本征模态分量;然后根据蓄电池与超级电容的介质频率特性,将混合储能功率分配给蓄电池与超级电容;最后针对储能元件易出现过充过放的弊端,对储能元件的荷电状态进行实时监测,利用模糊优化控制对蓄电池与超级电容的功率指令进行实时修正。仿真结果表明,所提策略不仅能自适应地实现风电功率的分解,使得并网功率满足风电输出功率最大波动值的限值要求,还可确保储能元件的荷电状态工作在正常范围内,避免过充过放的发生。  相似文献   

6.
针对混合储能系统在平抑光伏波动以及负荷投切时荷电状态(SOC)易越限问题,提出一种基于混合储能SOC的多模式协调控制策略。在传统低通滤波功率分配的基础上,提出一种基于超级电容荷电状态的动态功率修正策略,使超级电容出力后SOC向安全状态恢复;同时,为避免蓄电池频繁切换充放电状态,在其响应环节加入优化后的延时控制。此外,根据光伏出力情况、混合储能SOC,设计出满足直流微网系统动态平衡的六种运行模式,实时调节各储能单元出力情况。在MATLAB/Simulink中搭建了光伏直流微网混合储能系统仿真模型,仿真结果表明所提策略在各工况下均能稳定运行,有效延长了储能介质使用寿命。  相似文献   

7.
谢超  张建文  李星 《电测与仪表》2019,56(20):124-129
为实现风电平滑并网,采用蓄电池和超级电容组成的混合储能系统平抑风电出力波动。本文提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与模糊控制的混合储能控制策略。首先,利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)对风电输出功率信号进行分解。根据低、高频固有模态函数(IMF)能量的明显差异确定EEMD滤波阶次。其次,按照风电并网波动率的限制要求,对滤波阶次进行调整,将符合波动率要求的低频分量并网,高频分量分配给混合储能系统。然后,对蓄电池和超级电容的实时荷电状态(State of Charge,SOC)进行判断,利用模糊控制对超级电容的功率指令进行优化,防止超级电容过充和过放。仿真实例表明,所提策略既能实现风电输出功率的合理分配,有效的抑制风电波动,又能使混合储能系统的SOC稳定在合理区间,提高储能系统的使用寿命。  相似文献   

8.
针对交直流混联微电网孤岛运行时,仅靠互联变流器协调网间功率无法有效缓解系统频率与电压波动,且单一蓄电池储能难以适用多场景功率需求的问题,提出利用超级电容和蓄电池混合储能的交直流混联微电网功率协调控制策略。将混合储能作为储能子网连接在直流母线上,优先采用超级电容平抑交直流子网内功率波动,提出以储能荷电状态来划分五种工作模式的改进混合储能控制策略。兼顾超级电容快速响应特性和减少互联变流器的频繁起动,根据直流子网电压和交流子网频率波动程度,提出功率自治和功率互济工况的两级分层协调控制策略。通过设计混合储能处于不同工作模式的网间功率互济场景,仿真证明了所提混合储能和互联变流器协调控制策略能够平抑各子网负荷功率波动。  相似文献   

9.
张晓宇  张建成  王宁  王冠 《中国电力》2018,51(9):165-173
针对自然条件下光伏电源出力的波动性和间歇性,以铅酸蓄电池和超级电容器组成的混合储能系统为基础,提出了一种基于变分模态分解(variational mode decomposition, VMD)的储能系统功率分层分配方法。储能系统承担的净负荷经过VMD分解后的高频波动分量分配给超级电容器承担,趋势分量分配给蓄电池承担;同时根据各储能单元的实时最大可充放功率和荷电状态对初级功率分配进行二次修正。仿真实例表明,该方法可有效平抑净负荷波动,并实现了储能系统调节特性的优化和储能单元的长期稳定运行。  相似文献   

10.
徐衍会  徐宜佳 《中国电力》2022,55(6):186-193
为了平滑风电场输出功率,降低风电波动对电网造成的冲击,利用能量型储能元件电解槽与功率型储能元件超级电容相结合形成的混合储能系统对风电波动进行平抑。首先对大量时间片段内的储能出力进行概率统计分析,通过并网功率波动率在风电波动限值范围内的概率变化评估风电波动平抑效果,将给定置信水平的输出功率作为混合储能额定功率。在此基础上,通过考虑经济性的自适应滑动窗口算法将混合储能功率分解,进而确定超级电容的额定容量以及电解槽的额定功率,实现了兼顾经济性和波动平抑效果的容量配置。其次,依据超级电容的荷电状态、电解槽额定功率、储能系统总体功率指令制定混合储能系统的运行控制策略。最后结合风电场实际运行数据,仿真验证了所提方法可以实现功率分配、保证储能各元件正常运行,同时有效降低了风电输出功率的波动。  相似文献   

11.
超级电容的功率密度高、循环次数大,蓄电池的能量密度大、储能成本较低,因此结合两种储能的优点,建立了蓄电池-超级电容共直流母线的混合储能仿真模型,采用滤波和电流滞环协调控制策略,由超级电容来平抑系统功率波动的高频分量,蓄电池负责平衡系统功率波动的低频分量。仿真结果表明超级电容能有效平抑高频波动,蓄电池运行工况良好,协调控制策略取得较好效果。  相似文献   

12.
采用蓄电池-超级电容混合储能系统来平抑风电功率波动,实现风电平滑并网。首先,针对风功率非线性、不稳定的波动特性,结合1min/10min两个时间尺度的风电场输出功率变化最大限值,采用基于集合经验模态分解(EEMD)方法,实现风功率的自适应分解,得到风电并网功率和混合储能系统充、放电功率指令;其次,根据蓄电池和超级电容的出力需求,结合储能设备荷电状态(SOC)等约束条件,提出混合储能系统能量管理协调控制算法,实现储能系统内部功率相互流动;最后,基于风电历史数据,验证所提方法的有效性和合理性。  相似文献   

13.
随着风力发电所占发电比例的上升,其随机性、波动性及间歇性对电网的影响不可忽视。基于超级电容和蓄电池组成的复合储能系统,提出了一种用于抑制风电功率波动的自适应复合储能控制策略,通过引入超级电容荷电状态反馈来实施对低通/高通滤波器时间常数的控制,在完成对风电波动功率平抑的同时,合理分配平抑功率,避免超级电容过充过放。最后通过仿真,针对春夏秋冬不同时间窗口下的功率波动进行平抑,验证了所提自适应控制策略的有效性。  相似文献   

14.
在应用储能系统平抑风电场功率波动的过程中,为有效增强功率波动平抑的效果,同时延长储能系统的工作寿命,提出了基于模糊控制的储能系统控制方法。该方法根据风电机组输出功率的变化值和储能系统的电池荷电状态,采用模糊控制方法,实时调节低通滤波器的滤波时间常数,在尽可能平抑风电机组功率波动的同时,有效地保证电池荷电状态维持在限定范围内,避免电池过度充电或过度放电。在SIMULINK环境下进行了采用和不采用模糊控制的仿真对比,结果表明采用模糊控制的储能系统控制方法可以有效降低风机输出功率的变化率,同时也能降低储能电池荷电状态的变化率。  相似文献   

15.
在风力发电系统中配置一定容量的储能系统,可以有效平抑风电功率波动。提出一种新的基于混合储能的风电功率平抑控制策略,采用滑动平均值算法获取风电输出期望功率,蓄电池和超级电容构成混合储能补偿系统。采用Mamdani型模糊控制器改变滤波器时间常数,实现可变滤波;考虑到滤波器的延迟效应,利用Takagi-Sugeno型模糊控制器调整蓄电池参考功率值,从而实现混合储能系统内部的协调控制,优化补偿功率分配。同时,提出基于储能系统荷电状态的风储协调控制机制,将风机桨距角的功率调节与储能功率平抑相结合,协同工作实现风电功率的良好平抑。仿真结果表明该协调控制策略具有良好的风电功率平抑效果。  相似文献   

16.
分布式光伏未来将在配电网中实现大规模接入,但由于受环境影响,其输出功率波动较大,在光伏并网时会给配电网带来诸多不利。为此,提出了一种基于混合储能的自适应光伏功率平抑策略,通过协调蓄电池和超级电容的功率分配,充分发挥了超级电容响应速度快的特点。同时,平抑策略中的荷电状态(state of charge,SOC)反馈功能兼顾了储能的SOC变化情况,使其具有较强的自适应能力,实现了储能的最优化利用。最后,通过分析验证了所提策略的可行性和有效性。  相似文献   

17.
为促进风电在电网中的消纳,减轻配电网负荷压力,提出考虑风电出力波动和电动汽车集群储能系统平抑控制策略.首先,对单体电动汽车入网后行为特性进行储能建模,依据不同荷电状态(SOC)电动汽车有功响应能力,构建电动汽车集群储能模型,基于集群储能能力的差异性,利用多个电动汽车集群协调平抑联络线功率波动.其次,由集群储能系统依据联络线功率平抑波动值进行逐层自适应功率分配,确定各电动汽车蓄电池—超级电容的任务功率,充分利用车网连续调节能力.所提平抑策略可减轻大规模电动汽车连网后配电网中负荷的波动,实现储能系统内部功率相互流动,有效减少常规储能容量配置.  相似文献   

18.
风电功率的间歇与波动易引起局部电网的电压不稳、频率波动,影响了系统的电能质量及稳定性。针对此现象,将超级电容器与蓄电池组成快速储能装置,用于风电的功率波动平抑。首先,以风电并网要求为依据,对风电输出功率进行分解,得到满足要求的风电并网功率和需要混合储能功率平抑的功率;接着,根据储能介质的工作特性,制定超级电容优先充放电,蓄电池再进行充放电的协调控制策略,实现混合储能系统实时平抑风电功率的波动,同时发挥各储能介质的优势;针对传统遗传算法容易陷入局部收敛的缺陷,采用多种群遗传算法对混合储能容量进行优化配置。最后,通过仿真算例,验证混合储能控制策略和容量配置的有效性。  相似文献   

19.
针对混合储能系统(HESS)中不同功率分配方法对平抑风光发电输出功率波动的影响.利用移动平均滤波获得储能系统的参考功率,采用变分模态分解(VMD)获得HESS的初始功率分配,结合超级电容和蓄电池的荷电状态(SOC.)与其变化趋势,并使用模糊控制规则修正储能系统的充放电功率.提出一种基于VMD的双重模糊控制策略.比较不同功率分配方法下储能系统SOC的控制结果,配置不同情况下储能系统的功率和容量.仿真实验结果表明该策略能有效平抑风光发电功率波动,极大延长了储能系统的运行寿命.  相似文献   

20.
针对能量型储能系统和功率型储能系统互补控制技术,本文研究了应用于微电网中混合储能系统的有功功率分级分配方法与平抑风电功率波动的混合储能协调优化控制方法,利用蓄电池平抑风光输出功率的低频波动分量,利用超级电容平抑风光输出功率的高频波动分量,混合储能系统大大提高了风光并网后的稳定性与可控性。结合微电网架构模型以及风光等发电单元的数据,控制策略应用于浙江某海岛微电网示范工程改善了电能质量,增加了微网经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号