首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fuzzy time series models are of great interest in forecasting when the information is imprecise and vague. However, the major problem in fuzzy time series forecasting is the accuracy of the forecasted values. In the present study we propose a hybrid method of forecasting based on fuzzy time series and intuitionistic fuzzy sets. The proposed model is a simplified computational approach that uses the degree of nondeterminacy to establish fuzzy logical relations on time series data. The developed model was implemented on the historical enrollment data for the University of Alabama and the forecasted values were compared with the results of existing methods to show its superiority. The suitability of the proposed method was also examined in forecasting market share prices of the State Bank of India on the Bombay Stock Exchange, India.  相似文献   

2.
The study of fuzzy time series has attracted great interest and is expected to expand rapidly. Various forecasting models including high-order models have been proposed to improve forecasting accuracy or reducing computational cost. However, there exist two important issues, namely, rule redundancy and high-order redundancy that have not yet been investigated. This article proposes a novel forecasting model to tackle such issues. It overcomes the major hurdle of determining the k-order in high-order models and is enhanced to allow the handling of multi-factor forecasting problems by removing the overhead of deriving all fuzzy logic relationships beforehand. Two novel performance evaluation metrics are also formally derived for comparing performances of related forecasting models. Experimental results demonstrate that the proposed forecasting model outperforms the existing models in efficiency.  相似文献   

3.
In this paper, a computational method of forecasting based on fuzzy time series have been developed to provide improved forecasting results to cope up the situation containing higher uncertainty due to large fluctuations in consecutive year's values in the time series data and having no visualization of trend or periodicity. The proposed model is of order three and uses a time variant difference parameter on current state to forecast the next state. The developed model has been tested on the historical student enrollments, University of Alabama to have comparison with the existing methods and has been implemented for forecasting of a crop production system of lahi crop, containing higher uncertainty. The suitability of the developed model has been examined in comparison with the other models to show its superiority.  相似文献   

4.
In this paper, we present a computational method of forecasting based on multiple partitioning and higher order fuzzy time series. The developed computational method provides a better approach to enhance the accuracy in forecasted values. The objective of the present study is to establish the fuzzy logical relations of different order for each forecast. Robustness of the proposed method is also examined in case of external perturbation that causes the fluctuations in time series data. The general suitability of the developed model has been tested by implementing it in forecasting of student enrollments at University of Alabama. Further it has also been implemented in the forecasting the market price of share of State Bank of India (SBI) at Bombay Stock Exchange (BSE), India. In order to show the superiority of the proposed model over few existing models, the results obtained have been compared in terms of mean square and average forecasting errors.  相似文献   

5.
Fuzzy time series forecasting method has been applied in several domains, such as stock market price, temperature, sales, crop production and academic enrollments. In this paper, we introduce a model to deal with forecasting problems of two factors. The proposed model is designed using fuzzy time series and artificial neural network. In a fuzzy time series forecasting model, the length of intervals in the universe of discourse always affects the results of forecasting. Therefore, an artificial neural network- based technique is employed for determining the intervals of the historical time series data sets by clustering them into different groups. The historical time series data sets are then fuzzified, and the high-order fuzzy logical relationships are established among fuzzified values based on fuzzy time series method. The paper also introduces some rules for interval weighing to defuzzify the fuzzified time series data sets. From experimental results, it is observed that the proposed model exhibits higher accuracy than those of existing two-factors fuzzy time series models.  相似文献   

6.
ABSTRACT

Chen first proposed the high-order fuzzy-time series model to overcome the drawback of existing fuzzy first-order forecasting models. His model involved easy calculations and forecasted more accurately than the other models. This study proposes an enhanced fuzzy-time series model, called heuristic high-order fuzzy time series model, to deal with forecasting problems. The proposed model aims to overcome the deficiency of Chen's model, which depends strongly on the highest-order fuzzy-time series to eliminate ambiguities at forecasting and requires a vast memory for data storage. The empirical analysis reveals that the proposed model yields more accurate forecasts.  相似文献   

7.
Forecasting using fuzzy time series models needs computations of fuzzy relations in adjacent observations of time series data. In view of getting better forecasted values, these fuzzy relations have been considered as time invariant and time variant, and have been computed in several ways. However, the complication lies with the various rules developed for obtaining these fuzzy relations and then the defuzzification process. In this article, we propose a simple time variant method for time series forecasting. It uses the difference operator and the values obtained have been used for developing fuzzy rules for forecast. We develop algorithms to forecast enrollments of the University of Alabama and compared them with existing methods. The method has been also implemented to forecast rice production of Pantnagar (farm), India. The computational algorithms of the proposed method are simple and provide higher accuracy in forecasting.  相似文献   

8.
Many forecasting models based on the concept of fuzzy time series have been proposed in the past decades. Two main factors, which are the lengths of intervals and the content of forecast rules, impact the forecasted accuracy of the models. How to find the proper content of the main factors to improve the forecasted accuracy has become an interesting research topic. Some forecasting models, which combined heuristic methods or evolutionary algorithms (such as genetic algorithms and simulated annealing) with the fuzzy time series, have been proposed but their results are not satisfied. In this paper, we use the particle swarm optimization to find the proper content of the main factors. A new hybrid forecasting model which combined particle swarm optimization with fuzzy time series is proposed to improve the forecasted accuracy. The experimental results of forecasting enrollments of students of the University of Alabama show that the new model is better than any existing models, and it can get better quality solutions based on the first-order and the high-order fuzzy time series, respectively.  相似文献   

9.
A FCM-based deterministic forecasting model for fuzzy time series   总被引:1,自引:0,他引:1  
The study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling uncertainty and vagueness inherent in the data collected. A variety of forecasting models including high-order models have been devoted to improving forecasting accuracy. However, the high-order forecasting approach is accompanied by the crucial problem of determining an appropriate order number. Consequently, such a deficiency was recently solved by Li and Cheng [S.-T. Li, Y.-C. Cheng, Deterministic Fuzzy time series model for forecasting enrollments, Computers and Mathematics with Applications 53 (2007) 1904–1920] using a deterministic forecasting method. In this paper, we propose a novel forecasting model to enhance forecasting functionality and allow processing of two-factor forecasting problems. In addition, this model applies fuzzy c-means (FCM) clustering to deal with interval partitioning, which takes the nature of data points into account and produces unequal-sized intervals. Furthermore, in order to cope with the randomness of initially assigned membership degrees of FCM clustering, Monte Carlo simulations are used to justify the reliability of the proposed model. The superior accuracy of the proposed model is demonstrated by experiments comparing it to other existing models using real-world empirical data.  相似文献   

10.
In this paper, a new forecasting model based on two computational methods, fuzzy time series and particle swarm optimization, is presented for academic enrollments. Most of fuzzy time series forecasting methods are based on modeling the global nature of the series behavior in the past data. To improve forecasting accuracy of fuzzy time series, the global information of fuzzy logical relationships is aggregated with the local information of latest fuzzy fluctuation to find the forecasting value in fuzzy time series. After that, a new forecasting model based on fuzzy time series and particle swarm optimization is developed to adjust the lengths of intervals in the universe of discourse. From the empirical study of forecasting enrollments of students of the University of Alabama, the experimental results show that the proposed model gets lower forecasting errors than those of other existing models including both training and testing phases.  相似文献   

11.
Recently, many fuzzy time series models have already been used to solve nonlinear and complexity issues. However, first-order fuzzy time series models have proven to be insufficient for solving these problems. For this reason, many researchers proposed high-order fuzzy time series models and focused on three main issues: fuzzification, fuzzy logical relationships, and defuzzification. This paper presents a novel high-order fuzzy time series model which overcomes the drawback mentioned above. First, it uses entropy-based partitioning to more accurately define the linguistic intervals in the fuzzification procedure. Second, it applies an artificial neural network to compute the complicated fuzzy logical relationships. Third, it uses the adaptive expectation model to adjust the forecasting during the defuzzification procedure. To evaluate the proposed model, we used datasets from both the Taiwanese stock index from 2000 to 2003 and from the student enrollment records of the University of Alabama. The results of our study show that the proposed model is able to obtain an accurate forecast without encountering conventional fuzzy time series issues.  相似文献   

12.
A number of fuzzy time series models have been designed and developed during the last decade. One problem of these models is that they only provide a single-point forecasted value just like the output of the crisp time series methods. In addition, these models are suitable for forecasting stationary or trend time series, but they are not appropriate for forecasting seasonal time series. Hence, the objective of this study is to develop an integrated fuzzy time series forecasting system in which the forecasted value will be a trapezoidal fuzzy number instead of a single-point value. Furthermore, this system can effectively deal with stationary, trend, and seasonal time series and increase the forecasting accuracy. Two numerical data sets are selected to illustrate the proposed method and compare the forecasting accuracy with four fuzzy time series methods. The results of the comparison show that our system can produce more precise forecasted values than those of four methods.  相似文献   

13.
Conventional time series forecast models can hardly develop the inherent rules of complex non-linear dynamic systems because the strict assumptions they need cannot always be met in reality, whereas fuzzy time series (FTS) techniques can be used even the records of times series have uncertainty and instability since they do not need strict assumptions. In previous study of FTS, the process of aggregating the past observations and assigning proper weights of fuzzy logical relationship groups are ignored, which may lead to poor forecasting accuracy since they are important aspects in time series prediction and analysis where determination of future trends depends only on past observations. In this paper, a novel high-order FTS model is constructed to make time series forecasting. Specifically, by applying the harmony search intelligence algorithm, the optimal lengths of intervals are tuned. Moreover, regularly increasing monotonic quantifiers are employed on fuzzy sets to obtain the weights of ordered weighted aggregation. Simultaneously, the weights of right-hand side of fuzzy logical relationship groups are explored to compensate the presence of bias in the prediction. In the part of empirical analysis, the developed model was applied to predict three well-known time series: numbers of enrollment of Alabama University, TAIEX and electricity load demand of New South Wales and the results obtained were compared with several counterparts, including some old and recently developed models. Experimental results demonstrate that the developed model cannot only achieve higher accuracy of prediction, but also capture the fuzzy features and characters.  相似文献   

14.
In our daily life, people often use forecasting techniques to predict weather, economy, population growth, stock, etc. However, in the real world, an event can be affected by many factors. Therefore, if we consider more factors for prediction, then we can get better forecasting results. In recent years, many researchers used fuzzy time series to handle prediction problems. In this paper, we present a new method to predict temperature and the Taiwan Futures Exchange (TAIFEX), based on the two-factors high-order fuzzy time series. The proposed method constructs two-factors high-order fuzzy logical relationships based on the historical data to increase the forecasting accuracy rate. The proposed method gets a higher forecasting accuracy rate than the existing methods.  相似文献   

15.
Fuzzy time series forecasting models can be divided into two subclasses which are first order and high order. In high order models, all lagged variables exist in the model according to the model order. Thus, some of these can exist in the model although these lagged variables are not significant in explaining fuzzy relationships. If such lagged variables can be removed from the model, fuzzy relationships will be defined better and it will cause more accurate forecasting results. In this study, a new fuzzy time series forecasting model has been proposed by defining a partial high order fuzzy time series forecasting model in which the selection of fuzzy lagged variables is done by using genetic algorithms. The proposed method is applied to some real life time series and obtained results are compared with those obtained from other methods available in the literature. It is shown that the proposed method has high forecasting accuracy.  相似文献   

16.
Determination of fuzzy logic relationships between observations is quite effective on the forecasting performance of fuzzy time series approaches. In various studies available in the literature, it has been seen that utilizing artificial neural networks for establishing fuzzy relations increase the forecasting accuracy. In this study, a novel high order fuzzy time series forecasting approach in which multiplicative neuron model is used to define fuzzy relations is proposed in order to reach high forecasting level. Also, particle swarm optimization method is utilized to train multiplicative neuron model. In order to show forecasting performance of the proposed method, it is applied to a well-known data Taiwan future exchange and the results produced by the proposed approach is compared to those obtained from other fuzzy time series forecasting models. As a result of the implementation, it is observed that the proposed approach gives the best forecasts for Taiwan future exchange time series.  相似文献   

17.
首先应用模糊聚类方法将数据分类,以相邻两个聚类中心的中点作为子区间的分界点来划分论域,并以此将时间序列模糊化为模糊时间序列;其次根据证券市场主要量价指标建立了具有多个前件的高阶模糊关系;最后将该模型用于上证股票综合指数和深证股票成分指数的多步预测和涨跌趋势预测。与典型模糊时间序列模型比较,涨跌趋势预测准确率有较大提高,多步预测结果表明模型具有较好的泛化能力。  相似文献   

18.
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neural networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on seasonal time series from distinct domains on three forecasting horizons. The most important contribution is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.  相似文献   

19.
The fuzzy time series has recently received increasing attention because of its capability of dealing with vague and incomplete data. There have been a variety of models developed to either improve forecasting accuracy or reduce computation overhead. However, the issues of controlling uncertainty in forecasting, effectively partitioning intervals, and consistently achieving forecasting accuracy with different interval lengths have been rarely investigated. This paper proposes a novel deterministic forecasting model to manage these crucial issues. In addition, an important parameter, the maximum length of subsequence in a fuzzy time series resulting in a certain state, is deterministically quantified. Experimental results using the University of Alabama’s enrollment data demonstrate that the proposed forecasting model outperforms the existing models in terms of accuracy, robustness, and reliability. Moreover, the forecasting model adheres to the consistency principle that a shorter interval length leads to more accurate results.  相似文献   

20.
In the literature, there have been many studies using fuzzy time series for the purpose of forecasting. The most studied model is the first order fuzzy time series model. In this model, an observation of fuzzy time series is obtained by using the previous observation. In other words, only the first lagged variable is used when constructing the first order fuzzy time series model. Therefore, this model can not be sufficient for some time series such as seasonal time series which is an important class in time series models. Besides, the time series encountered in real life have not only autoregressive (AR) structure but also moving average (MA) structure. The fuzzy time series models available in the literature are AR structured and are not appropriate for MA structured time series. In this paper, a hybrid approach is proposed in order to analyze seasonal fuzzy time series. The proposed hybrid approach is based on partial high order bivariate fuzzy time series forecasting model which is first introduced in this paper. The order of this model is determined by utilizing Box-Jenkins method. In order to show the efficiency of the proposed hybrid method, real time series are analyzed with this method. The results obtained from the proposed method are compared with the other methods. As a result, it is observed that more accurate results are obtained from the proposed hybrid method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号