首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the rapid growth of computer and Internet technologies, e-learning has become a major trend in the computer assisted teaching and learning field. Previously, many researchers put effort into e-learning systems with personalized learning mechanism to aid on-line learning. However, most systems focus on using learner’s behaviors, interests, and habits to provide personalized e-learning services. These systems commonly neglect to consider if learner ability and the difficulty level of the recommended courseware are matched to each other. Frequently, unsuitable courseware causes learner’s cognitive overload or disorientation during learning. To promote learning effectiveness, our previous study proposed a personalized e-learning system based on Item response theory (PEL-IRT), which can consider both course material difficulty and learner ability evaluated by learner’s crisp feedback responses (i.e. completely understanding or not understanding answer) to provide personalized learning paths for individual learners. The PEL-IRT cannot estimate learner ability for personalized learning services according to learner’s non-crisp responses (i.e. uncertain/fuzzy responses). The main problem is that learner’s response is not usually belonging to completely understanding or not understanding case for the content of learned courseware. Therefore, this study developed a personalized intelligent tutoring system based on the proposed fuzzy item response theory (FIRT), which could be capable of recommending courseware with suitable difficulty levels for learners according to learner’s uncertain/fuzzy feedback responses. The proposed FIRT can correctly estimate learner ability via the fuzzy inference mechanism and revise estimating function of learner ability while the learner responds to the difficulty level and comprehension percentage for the learned courseware. Moreover, a courseware modeling process developed in this study is based on a statistical technique to establish the difficulty parameters of courseware for the proposed personalized intelligent tutoring system. Experiment results indicate that applying the proposed FIRT to web-based learning can provide better learning services for individual learners than our previous study, thus helping learners to learn more effectively.  相似文献   

2.
针对"随着预测距离的增加,旅行时间预测的难度加大"的问题,提出了一种基于时空特征向量的长短期记忆(LSTM)和人工神经网络(ANN)的综合预测模型.首先,将24 h切分为288个时间切片,以生成时间特征向量;然后,基于时间切片建立LSTM时间窗口模型,该模型可解决长期预测的窗口移动问题;其次,将公交线路切分为多个空间切...  相似文献   

3.
It is significant to build up the risk classification model of cervical cancer for the evaluation of high-risk population. Data were divided into two sub-data, one is model building sub-data, the other is model testing sub-data. By using of artificial neural network (ANN) analysis method (Back Propagation, BP), the risk classification model had been setup. The parameters were listed as following: the data had been treated as normalization, and the level of network was 3, and the number of neural in hidden level was 5, and the transmitting function between input level and hidden level was logsig, and the transmitting function between hidden level and output level was purelin, and the studying method was Levenberg–Marquardt optimizing, and the error parameter eg = 0.09, maximum epochs me = 8000. The model quality was good (sensitivity = 98%, specificity = 97%), and the back calculation fitting result was excellent. The predictive value of 10 unknown data was also good, during which the correct rate of control group was 100%, and that of case group was 80%. Because ANN is with the character of self-organizing, self-learning and self-adapting, the ANN risk classification model is fit for the screening of high-risk population of local cervical cancer, risk evaluation of cervical cancer and the effect evaluation of the prevention method after training the model by new data of some area.  相似文献   

4.
The ability of artificial neural networks (ANN) to model the unsteady aerodynamic force coefficients of flapping motion kinematics has been studied. A neural networks model was developed based on multi-layer perception (MLP) networks and the Levenberg–Marquardt optimization algorithm. The flapping kinematics data were divided into two groups for the training and the prediction test of the ANN model. The training phase led to a very satisfactory calibration of the ANN model. The attempt to predict aerodynamic forces both the lift coefficient and drag coefficient showed that the ANN model is able to simulate the unsteady flapping motion kinematics and its corresponding aerodynamic forces. The shape of the simulated force coefficients was found to be similar to that of the numerical results. These encouraging results make it possible to consider interesting and new prospects for the modelling of flapping motion systems, which are highly non-linear systems.  相似文献   

5.
Due to the rapid development of globalization, which makes supply chain management more complicated, more companies are applying radio frequency identification (RFID), in warehouse management. The obvious advantages of RFID are its ability to scan at high-speed, its penetration and memory. In addition to recycling, use of a RFID system can also reduce business costs, by indentifying the position of goods and picking carts. This study proposes an artificial immune system (AIS)-based fuzzy neural network (FNN), to learn the relationship between the RFID signals and the picking cart’s position. Since the proposed network has the merits of both AIS and FNN, it is able to avoid falling into the local optimum and possesses a learning capability. The results of the evaluation of the model show that the proposed AIS-based FNN really can predict the picking cart position more precisely than conventional FNN and, unlike an artificial neural network, it is much easier to interpret the training results, since they are in the form of fuzzy IF–THEN rules.  相似文献   

6.
This paper proposes a pursuit system that utilizes the artificial life concept where autonomous mobile agents emulate the social behavior of animals and insects and realize their group behavior. Each agent contains sensors to perceive other agents in several directions, and decides its behavior based on the information obtained by these sensors. In this paper, a neural network is used for behavior decision controlling. The input of the neural network is decided by the existence of other agents, and the distance to the other agents. The output determines the directions in which the agent moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behavior adequately fit the goal and can express group behavior. The validity of the system is verified through simulation. Also in this paper, we have observed the agents emergent behavior during simulation.This paper was supported by WonKwang University in 2004.  相似文献   

7.
一种新的基于神经网络的IRT项目参数估计模型   总被引:4,自引:0,他引:4  
探讨了一种新的基于广义回归神经网络(GRNN)的IRT(项目反应理论)项目参数估计建模方法,着重介绍了如何建立网络的输出模式及利用Monte Carlo方法建立网络的输入模式,提出了多种对模型进行改进的方法。模拟实验表明,利用GRNN可以以任意精度拟合CTT(经典测验理论)参数统计值和IRT参数值间隐含的非线性关系。与其他方法进行的比较表明,在小样本情况下,该方法的参数估计误差更小。  相似文献   

8.
基于云理论与神经网络集成的模糊系统   总被引:1,自引:0,他引:1  
柳炳祥  李海林 《计算机应用》2008,28(2):305-306,
提出了一种基于云理论与神经网络混合集成的模糊系统。通过不确定性人工智能,解决了在实际模糊系统中输入变量隶属函数和知识规则确定的难题,利用神经网络实现了变量之间的非线性映射。该系统不但具有神经网络自适应的学习能力,且结合云理论处理知识的不确定性能力,使模糊系统在知识推理过程中更具有说服力,在整体上提高了算法的效率。  相似文献   

9.
人工神经网络泛化问题研究综述*   总被引:6,自引:1,他引:6  
从理论、方法(思想)和技术三个层次回顾了以往工作,讨论了模型复杂度、样本复杂度及两者之间关系的相关研究;在实际中,通过控制模型复杂度、调整样本等具体技术可以在一定程度上提高神经网络的泛化能力,但这些技术仍然存在一些问题没有解决。最后提出了对今后研究的展望。  相似文献   

10.
张衡  贾志成  陈雷  郭艳菊 《计算机应用研究》2020,37(4):1221-1225,1238
针对高光谱图像解混问题进行研究,发现传统解混算法在保持端元数目不变的情况下,得到的解混精度不高。为此,基于人工神经网络(ANN)提出一种估计单像素点中端元数目和类别的解混算法。首先利用人工神经网络对遥感图像中各个像素的端元数目和类别进行估计;之后依据估计结果确定解混算法的目标函数,并引入改进的差分搜索算法对目标函数进行优化求解;最终获取地物丰度和待求参数,实现高光谱图像的解混。仿真数据和真实遥感数据实验表明,与现有的解混算法相比,所提解混算法具有更高的解混性能,更加符合实际场景的情况。  相似文献   

11.
Remote health monitoring adoption model based on artificial neural networks   总被引:1,自引:0,他引:1  
The purpose of this research is to utilize the adoption model of remote health monitoring established by artificial neural networks (ANNs). The adoption model by the naming is the healthcare information adoption model (HIAM) that it is created first time by myself. The HIAM focused on citizens in Taiwan as research subjects. The main research result showed that people’s perceived usefulness and benefits (PUB) must be raised in order to effectively increase the adoption of remote health monitoring. Moreover, this research has proved that the utilization of the adoption model of remote health monitoring established by ANN based on the HIAM is feasible. These findings may offer significant reference for subsequent studies.  相似文献   

12.
In recent years, functional networks have emerged as an extension of artificial neural networks (ANNs). In this article, we apply both network techniques to predict the catches of the Prionace Glauca (a class of shark) and the Katsowonus Pelamis (a variety of tuna, more commonly known as the Skipjack). We have developed an application that will help reduce the search time for good fishing zones and thereby increase the fleets competitivity. Our results show that, thanks to their superior learning and generalisation capacities, functional networks are more efficient than ANNs. Our data proceeds from remote sensors. Their spectral signatures allow us to calculate products that are useful for ecological modelling. After an initial phase of digital image processing, we created a database that provides all the necessary patterns to train both network types.  相似文献   

13.
利用人工神经网络,结合RSA密码体制,实现了一种基于一般访问结构的多重秘密共享方案.在该方案中,秘密份额是人工神经网络收敛结果,各参与者共享多个秘密只需要维护一个秘密份额.共享多个秘密只需要进行一次人工神经网络训练,从而提高了方案的效率;在秘密分发和恢复时,利用RSA密码体制保证方案的安全性和正确性.分析表明,该方案是一个安全的、实用的秘密共享方案.  相似文献   

14.
This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies.  相似文献   

15.
蒋宁  翟玉庆 《计算机应用》2007,27(5):1283-1282
具有学习能力和动态适应环境变化的自主角色已经成为商业游戏的一个卖点,采用传统的人工智能方法往往无法实现复杂的自主角色的行为,基于此,采用非确定性的神经网络和遗传算法来实现自主角色已经成为当前游戏人工智能的一个热点。分析了游戏自主角色的特点, 建立了NPC的自主认知模型,同时采用神经网络和遗传算法相结合的游戏自主角色的设计思路,利用遗传算法优化神经网络的方法设计了一个自主角色的框架,建立了一个游戏角色的自学习模型,通过仿真实验表明采用神经网络和遗传算法相结合的非确定性算法形成的游戏角色的自学习系统要比传统的NPC角色更加自主和智能化。  相似文献   

16.
计算机网络安全综合评价的神经网络模型   总被引:6,自引:0,他引:6       下载免费PDF全文
灰色评价法、模糊综合评价等需确定隶属函数、各指标权重,明显受人为因素的影响。尝试应用神经网络技术进行网络安全的综合评价,并通过在单指标评价标准范围内随机取值方法,生成建立神经网络模型所需的训练样本、检验样本和测试样本,在遵循BP网络建模基本原则和步骤的情况下,建立了可靠、有效的网络安全综合评价模型。16个实例研究表明:提出的样本生成方法、建模过程是可靠的,并能有效地避免出现“过训练”和“过拟合”现象,建立的BP模型具有较好的泛化能力,不受人为因素的影响,各评价指标与网络安全等级之间存在明显的非线性关系,网络安全策略对网络安全的影响最大。  相似文献   

17.
Since learning English is very popular in non-English speaking countries, developing modern assisted-learning tools that support effective English learning is a critical issue in the English-language education field. Learning English involves memorization and practice of a large number of vocabulary words and numerous grammatical structures. Vocabulary learning is a principal issue for English learning because vocabulary comprises the basic building blocks of English sentences. Therefore, many studies have attempted to improve the efficiency and performance when learning English vocabulary. With the accelerated growth in wireless and mobile technologies, mobile learning using mobile devices such as PDAs, tablet PCs, and cell phones has gradually become considered effective because it inherits all the advantages of e-learning and overcomes limitations of learning time and space that limit web-based learning systems. Therefore, this study presents a personalized mobile English vocabulary learning system based on Item Response Theory and learning memory cycle, which recommends appropriate English vocabulary for learning according to individual learner vocabulary ability and memory cycle. The proposed system has been successfully implemented on personal digital assistant (PDA) for personalized English vocabulary learning. The experimental results indicated that the proposed system could obviously promote the learning performances and interests of learners due to effective and flexible learning mode for English vocabulary learning.  相似文献   

18.
基于人工神经网络的参数灵敏度分析模型*   总被引:1,自引:0,他引:1  
通过人工神经网络算法与参数灵敏度分析的结合,找到了一种新的工程系统功能模拟和变化分析方法。神经网络可以有效地解决复杂、非线性系统的功能模拟问题,其传递函数的可微性为参数灵敏度矩阵的求解提供了保证,从而方便寻找系统输入属性与输出属性之间的影响因子。同时,该模型具有良好的扩展性,可以更加全面地考虑系统影响因素。经实例仿真分析表明:该方法在工程分析方面,能够快速找到属性之间的关联程度,得到准确、稳定的分析结果,满足工程分析需求。  相似文献   

19.
基于人工神经网络的葡萄病害诊断专家系统   总被引:2,自引:0,他引:2       下载免费PDF全文
设计了一种基于人工神经网络的葡萄病害诊断专家系统。以常见的18种主要的葡萄病害为研究对象,将专家知识转换为诊断规则,并作为学习样本输入神经网络进行训练,形成人工神经网络推理机。同时,采用知识库、规则推理和人工神经网络推理相结合的系统结构来优化专家系统,在提高专家系统自学能力的同时也提高了系统的响应速度。采用C#、Matlab和.NET技术混合编程实现专家系统,实验结果表明该系统有较高的诊断准确率并能稳定运行。该系统在Web上运行,更有利于系统的推广应用。  相似文献   

20.
李明旭  邓欣  王进  王潇  张笑谋 《计算机应用》2016,36(7):1909-1913
为了模拟秀丽隐杆线虫的趋温性行为,提出一种通过人工神经网络对秀丽隐杆线虫的趋温性行为进行建模的方法,并进行实验仿真。首先,建立秀丽隐杆线虫的运动模型;然后,通过设计非线性函数逼近线虫趋温性的运动逻辑,实现运动速度和偏向角度的改变功能;最后,通过人工神经网络对该非线性函数进行学习,从而在Matlab环境中对上述过程进行实验仿真,模拟出了秀丽隐杆线虫的趋温性行为。实验结果表明,在更接近生物体本质的条件下,反馈(BP)神经网络比径向基函数(RBF)神经网络能更好地模拟线虫的趋温性行为。同时也表明所提方法能够很好地模拟秀丽隐杆线虫的趋温性行为,在一定程度上揭示了线虫趋温性的实质,理论上支持了爬虫机器人的趋温性研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号