首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-highly transparent ZrO2-doped Yb3+: Y2O3 ceramics were prepared by slip casting and vacuum pressureless sintering and the transmittance reached the highest value of 80.9% for the sample doped with 8.0 at% Yb3+. There are three main absorption peaks at 905, 950, and 976 nm, corresponding to the transition from the lowest level of field splitting of 2F7/2 crystal to every splitting energy levels of 2F5/2 crystal field. We analyzed the absorption and emission spectra of transparent Yb3+: Y2O3 from the energy level structure of Yb3+, and the transmission, absorption, and emission spectra were systematically studied. There are three main absorption peaks at 905, 950, and 976 nm and four emission peaks at 1076, 1031, 1013, and 977 nm, respectively. The emission peaks at 977 and 1013 nm broaden and vanish for 8.0 and 10.0 at% Yb3+-doped Y2O3, which may be related to the change of Y2O3 crystal field caused by high concentration.  相似文献   

2.
Transparent ceramics of 10% Yb doped Lu2O3 was fabricated by spark plasma sintering. The operating vital parameters in yielding transparency and mutual effects of sintering, pressure, dwell time, heating rate and annealing temperature on microstructure have been investigated. Fully compacted specimens were obtained at 1250 °C and the average grain size increased from few nm up to 5 μm until 1700 °C, above which abnormal grain growth was witnessed. The post-annealing of sintered ceramics at 1200 °C removes discoloration and improves transparency. The ceramics prepared at 1700 °C with dwell time of 5 min and heating rate at 50 °C/min shows the maximum transmittance with a thickness of 2 mm of 55% at a wavelength of 2 μm.  相似文献   

3.
Tb3+/Yb3+ co-doped Y2O3 transparent ceramics were fabricated by vacuum sintering of the pellets (prepared from nanopowders by uniaxial pressing) at 1750 °C for 5 h. Zr4+ and La3+ ions were incorporated in Tb3+/Yb3+ co-doped Y2O3 nanoparticle to reduce the formation of pores which limits the transparency of ceramic. An optical transmittance of ∼80% was achieved in ∼450 to 2000 nm range for 1 mm thick pellet which is very close to the theoretical value by taking account of Fresnel’s correction. High intensity luminescence peak at 543 nm (green) was observed in these transparent ceramics under 976 and 929 nm excitations due to Yb–Tb energy transfer upconversion.  相似文献   

4.
We report on our recent progress of fabricating Yb3+-doped Lu2O3 transparent ceramics for 1 μm solid-state laser application. Well-dispersed 3.3 at.% Yb:Lu2O3 nanopowders were synthesized using a co-precipitation method. Without using any sintering aids, the Yb:Lu2O3 nanopowders could be densified by vacuum sintering at 1500°C/10 hours followed by HIPing at 1480°C/4 hours. Such obtained Yb:Lu2O3 ceramics had not only dense microstructure and submicron grain size of about 0.6 μm, but also in-line transmission of 80.0% at 600 nm. Preliminary continuous wave (CW) laser experiments with an uncoated Yb:Lu2O3 ceramic slab have demonstrated highly efficient CW laser oscillation at 1079.8 nm.  相似文献   

5.
《Ceramics International》2019,45(14):17354-17362
Yb:YAG (yttrium aluminum garnet) transparent ceramics were fabricated by the solid-state method using monodispersed spherical Y2O3 powders as well as commercial Al2O3 and Yb2O3 powders. Pure YAG phase was obtained at low temperature due to homogeneous mixing of powders. Under the same sintering conditions, the Yb:YAG ceramics with different doping contents of Yb3+ had similar morphologies and densification rates. After being sintered at 1700 °C in vacuum, the ceramic samples had high transparencies. The Yb:YAG ceramics doped with 0.5 wt% SiO2 formed Y–Si–O liquid phase and nonstoichiometric point defects that enhanced sintering. Compared with Nd doping, Yb doping hardly affected the YAG grain growth, sintering densification or optical transmittance, probably because Yb3+ easily entered the YAG lattice and had a high segregation coefficient.  相似文献   

6.
《Ceramics International》2015,41(7):8755-8760
0–0.7 at% Cr:Y2O3 transparent ceramics were prepared by vacuum sintering. The optimum in-line transmittance in the visible and near infrared region is 78%, and the Vickers hardness of the sintered 0.1 at% Cr:Y2O3 is 10.1 GPa, respectively. The mechanism of Cr-doped and the optical properties has been discussed. The results indicated that the Cr:Y2O3 transparent ceramic is a promising laser material with enhanced mechanical property.  相似文献   

7.
Yb3+-doped Lu2O3 nanoparticles produced by laser ablation were used to fabricate transparent ceramics by a combination of pressureless sintering in vacuum (PS) followed by a hot isostatic pressing (HIPing). The samples were subjected to various PS and HIPing conditions and the microstructure evolution and its correlation with the transmittance were investigated. Relative densities of over 97% were achieved after PS at the temperatures of 1250–1700 °C. Rapid grain growth occurred within PS and HIPing temperatures above 1500 °C leading to formation of intragranular porosity which is deleterious for optical quality. Higher transmittance (81.7% at λ = 1080 nm) and ultrafine microstructure with an average grain size of 0.35 μm were obtained by PS at 1250 °C followed by HIPing at 1400 °C for 5 h under 207 MPa. Output power of 2.02 W with a slope efficiency of 46.5% was obtained under a quasi-continuous wave end pumping at 929.4 nm.  相似文献   

8.
Conventional ceramic processing techniques do not produce ultrafine‐grained materials. However, since the mechanical and optical properties are highly dependent on the grain size, advanced processing techniques are needed to obtain ceramics with a grain size smaller than the wavelength of visible light for new laser sources. As an empirical study for lasing from an ultrafine‐grained ceramics, transparent Yb3+:Y2O3 ceramics with several doping concentrations were fabricated by spark plasma sintering (SPS) and their microstructures were analyzed, along with optical and spectroscopic properties. Laser oscillation was verified for 10 at.% Yb3+:Y2O3 ceramics. The laser ceramics in our study were sintered without sintering additives, and the SPS produced an ultrafine microstructure with an average grain size of 261 nm, which is about one order of magnitude smaller than that of ceramics sintered by conventional techniques. A load was applied during heating to enhance densification, and an in‐line transmittance near the theoretical value was obtained. An analysis of the crystal structure confirmed that the Yb3+:Y2O3 ceramics were in a solid solution. To the best of our knowledge, this study is the first report verifying the lasing properties of not only ultrafine‐grained but also Yb‐doped ceramics obtained by SPS.  相似文献   

9.
Y2O3 transparent ceramics were annealed under different atmospheric conditions. The samples annealed in H2 containing atmosphere were colorless and had high in-line transmittances from the near-UV to the mid-infrared wavelength range. This is due to the elimination of carbon contamination and preventing the formation of high concentration oxygen interstitial defects in the sintered samples. Annealing in oxygen containing atmosphere resulted in stronger optical absorption in the visible wavelength region. High temperature annealing in O2 or hot isostatic pressing under high partial pressure of O2 (O2 HIP) led to obviously declining of transparency in a broader wavelength range of 230–800 nm. The Er:Y2O3 ceramics annealed in H2 containing atmosphere had high in-line transmittance of about 80% at 400 nm as well. Room temperature laser oscillation at 2.7 µm was also obtained on the 5%H2/95%Ar atmosphere annealed Er:Y2O3 ceramics.  相似文献   

10.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   

11.
12.
《Ceramics International》2017,43(15):12057-12060
Transparent Sm:Y2O3 ceramics were fabricated by spark plasma sintering (SPS). The effects of LiF additive and sintering temperature on the microstructure and optical transmittance of the Sm:Y2O3 ceramics were investigated. The optimal content of LiF additive and sintering temperature was found to be 0.3 wt% and 1500 ℃. The transmittance of Sm:Y2O3 ceramics with a thickness of 1.7 mm reached 75.3% at 609 nm, which is about 94% of the theoretical value. The average grain size of the sample was about 50 µm.  相似文献   

13.
《Ceramics International》2019,45(13):16002-16007
Formation peculiarities of highly-doped (Y0.86La0.09Yb0.05)2O3 transparent ceramics have been studied by X-ray diffraction and electron microscopy methods. The phase composition evolution of 1.81Y2O3∙0.18La2O3∙0.01Yb2O3 powder mixtures annealed at the temperatures of 1100, 1200, 1300, and 1400 °C has been studied by XRD. It has been shown that Yb2O3 phase dissolves in Y2O3 matrix in the calcination temperature range of 1300–1400 °C. Complete dissolution of La2O3 in Y2O3 matrix occurs at temperatures above 1400 °C. La3+ ions enter in Y2O3 and Yb2O3 crystal structures simultaneously in the 1200–1300 °C range, which leads to a remarkable increase in the volume of the corresponding crystal lattices. The possible reasons for suppressing the crystalline growth of Y2O3 and Yb2O3 cubic phases have been discussed. Finally, (Y0.86La0.09Yb0.05)2O3 transparent ceramics have been obtained by solid-state vacuum sintering at 1650–1750 °C. Ceramics synthesized at a temperature of 1750 °C have been characterized by an in-line optical transmittance of 60% and a homogeneous distribution of constituent components within the volume and along the grain boundaries.  相似文献   

14.
5 at.% Yb:Y2O3 transparent ceramics were fabricated using vacuum sintering plus HIP. The ceramics doped with 1 at.% ZrO2 as the sintering additive were densified at 1700 °C in vacuum followed by HIPing at 1775 °C, while those without sintering additives were densified at 1520 °C in vacuum followed by HIPing at 1450 °C. After sintering, both ceramics had relatively high in-line transmittance. However, during laser experiments, the ZrO2-doped Yb:Y2O3 (Zr-YbY) ceramics were photodarkened when irradiated by 940 nm pump light. The discoloration might be attributed to the formation of Zr3+ color centers during lasing. In contrast, no photodarkening effect was detected in the pure Yb:Y2O3 ceramics without sintering additives (P-YbY). The P-YbY ceramics exhibited much higher lasing efficiency (17%) than the Zr-YbY ceramics (9%). To our best knowledge, it is the first time that the photodarkening effect was detected in rare-earth doped sesquioxide laser ceramics.  相似文献   

15.
5at.% Yb:Lu2O3 transparent ceramics were fabricated successfully by vacuum sintering along with hot isostatic pressing posttreatment from the nanopowders. The influences of calcination temperature on morphology and microstructures of powders and ceramics were studied systematically. The optimal ceramic sample from the nanopowder calcined at 1050°C shows uniform and dense microstructure with the in-line transmittance of 81.5% at 1100 nm. The results of the thermal measurements, that is, thermal conductivity and specific heat, were related to the changes occurring in the microstructure of the ceramics studied. It was shown on this basis that appropriate control of the technological process of sintering ceramics makes it possible to obtain laser ceramics with very good thermal properties as well as maintaining their high optical quality. Concerning the laser performance, the highest-optical quality 5at.% Yb:Lu2O3 sample was pumped in quasi-continuous wave conditions measuring a maximum output power of 2.59 W with a corresponding slope efficiency of 32.4%.  相似文献   

16.
In this article, 5 at.% Yb:Lu2O3 transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) posttreatment using co-precipitated nano-powders. The influence of precipitant molar ratio, ammonium hydrogen carbonate, to metal ions (AHC/M3+, R value) on the properties of Yb:Lu2O3 precursors and calcined powders was investigated systematically. It was found that the powders with different R value calcined at 1100°C for 4 hours were pure cubic Lu2O3 but the morphologies of precursors and powders behaved differently. The opaque samples pre-sintered at 1500°C for 2 hours grew into transparent ceramics after HIP posttreatment at 1750°C for 1 hour. The final ceramic with R = 4.8 showed the best optical quality with the in-line transmittance of 79.7% at 1100 nm. The quasi-CW laser operation was performed at 1034 nm and 1080 nm with a maximum output power up to 8.15 W as well as a corresponding slope efficiency of 58.4%.  相似文献   

17.
Ytterbium doped scandium oxide (Yb:Sc2O3) transparent ceramics were fabricated by a co-precipitation and vacuum sintering method. The characteristics of the precursor and the calcined powders were investigated by BET, XRD, and SEM. Ultra-fine and low agglomerated 5at%Yb:Sc2O3 powders with the average particle size about 65.4 nm were obtained after calcined at 1100 °C for 5 h. Using the synthesized powders as starting materials, 5at%Yb:Sc2O3 transparent ceramics with the in-line transmittance of 71.1% at 1100 nm and average grain size of 145 μm were fabricated by vacuum sintering at 1825 °C for 10 h. Quasi-CW laser oscillation of Yb:Sc2O3 ceramics was obtained at 1040.6 nm. A maximum output power as high as 2.44 W with a corresponding slope of 35% was achieved. Finally, the tunability of the ceramic was explored measuring a tuning range up to 55 nm.  相似文献   

18.
Transparent Y2O3 ceramics were successfully fabricated by spark plasma sintering applying a two-step pressure and heating profile. Through the shrinkage curve of the single-step SPS profile, it was confirmed that shrinkage occurred at 800°C–1250°C, and it was selected as the two-step pressure profile. After the first-step SPS stage at 1250°C, the second-step SPS stage, which had the highest real in-line transmittance, was completed at 1500°C. The two-step SPS profile improved the shrinkage behavior and was able to achieve sufficient densification without excessive coarsening. As a result, the normalized real in-line transmittance to 1 mm was 80.6% at 1100 nm, which is close to the theoretical transmittance of 81.6%. The two-step pressure and heating profile in the SPS process was a significant advantage in manufacturing ceramics that were transparent and had sufficient densification.  相似文献   

19.
Sintering-additive-free fine-grained highly transparent Y2O3 ceramics featuring record-high thermal shock resistance were fabricated using commercial powders via vacuum pre-sintering (1375–1550?°C) followed by hot-isostatic pressing (1450?°C). The sample pre-sintered at 1450?°C provides the optimum microstructure for post HIPing, which resulted in a grain size of 0.64?μm. The transmittance, microhardness and fracture toughness of the thus HIPed sample are 80.8% at 1100?nm and 65.5% at 400?nm (1.2?mm thick), 8.0?±?0.02?GPa and 1.00?±?0.06?MPa?m1/2, respectively. The thermal conductivity increases from 13.1 to 16.5?W/m/K with increasing vacuum pre-sinterin Proc. SPIE-Int. Soc. Opt g temperature from 1450 to 1550?°C. This hybrid sintering method realized high thermal conductivity and high strength simultaneously. Consequently, the thermal shock resistance of the HIPed specimen vacuum pre-sintered at 1450?°C in this work is the highest ever reported to the best of our knowledge, which makes the developed material a promising candidate for high-power laser host and IR dome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号