首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(19):26877-26890
Zirconia-based ceramics are becoming a popular biomaterial in dental implantology due to their natural silver-white color, excellent mechanical properties, and good biocompatibility. However, zirconia-based ceramics are biologically inert, which limits their ability to integrate with the surrounding human tissues. To solve this problem, the bioactive elements of calcium (Ca) and phosphorus (P) were doped in high-strength ZrO2–SiO2 nanocrystalline glass-ceramics (NCGCs) to overcome the biological inertness of ZrO2-based ceramics. XRD results showed that tetragonal zirconia (t-ZrO2) and monoclinic zirconia (m-ZrO2) were the only two crystalline phases after spark plasma sintering. Ca and P dopants acted as destabilizer of t-ZrO2, enhancing its transformability to m-ZrO2 during sintering. The amount of t-ZrO2 exerted significant effects on the average flexural strength of the NCGCs. The NCGC with 45 mol% ZrO2 were composed of 64.5 vol% t-ZrO2 and 35.5 vol% m-ZrO2 after sintering at 1230 °C. And, the average flexural strength and Vickers hardness of the NCGC was 615 MPa and 1049 HV, respectively. In comparison, the NCGC with 65 mol% ZrO2 were composed of 12.6 vol% t-ZrO2 and 87.4 vol% m-ZrO2 after sintering at 1150 °C. The average flexural strength and Vickers hardness of the NCGC was 293 MPa and 839 HV, respectively. Interestingly, the NCGCs exhibited a plastic deformation behavior during flexural strength test, which was different from traditional brittle ceramics. The ion release results demonstrated that Ca2+ and Si4+ ions kept on releasing from the surface of the material. The formation of hydroxyapatite in the in-vitro apatite formation test indicated that the NCGCs had good biological activity. The doped ZrO2-based NCGCs combined moderate strength and good bioactivity. Hence, the NCGCs show promising potential to be used in sub-gingival regions, such as dental abutments.  相似文献   

2.
It is challenging to develop a material that combines good mechanical properties and high translucency since these properties are generally not coincident in one material. In this study, we prepared ZrO2-SiO2 nanocrystalline glass-ceramics that combines the above two types of properties. Raw powder with 55 mol%, 65 mol%, and 75 mol% ZrO2 and each with 5 mol% yttrium as a dopant was prepared by sol-gel method, followed by spark plasma sintering to obtain dense glass-ceramics. XRD results demonstrated that the glass-ceramics with 65 mol% and 75 mol% ZrO2 were composed of tetragonal-ZrO2, whereas, that with 55 mol% ZrO2 was composed of cubic-ZrO2. The as-sintered glass-ceramics showed black/brown discoloration, but they obtained high translucency after thermal treatment. X-ray energy-dispersive spectrometry (EDS) results in scanning electron transmission microscopy (STEM) mode demonstrated yttrium dopants were predominately distributed in ZrO2 nanocrystallites. The glass-ceramics with 65 mol% ZrO2 had the highest flexural strength, achieving an average value of 673 MPa. The glass-ceramics with different compositions sintered at different temperatures showed fracture toughness values ranging from 5.25 MPa m1/2 to 6.69 MPa m1/2. The strong and translucent ZrO2-SiO2 nanocrystalline glass-ceramics showing great protentional to be used in many fields.  相似文献   

3.
《应用陶瓷进展》2013,112(6):373-380
Abstract

This review article covers the historical development of ceramics, from the beginnings to the present. Feldspar based ceramic biomaterials for veneering metal frameworks, which are based on the jacket porcelain crown, have firmly established themselves in restorative dentistry since the 1970s. Currently, the development of restorative dental materials that can be used to replace metal represents a major challenge. As a result, this review will focus on the latest materials in this field. These materials include glass ceramics as well as high performance sintered ceramics. Glass ceramics exhibit more favourable optical properties, such as translucency and colour, compared with high performance ceramics, while the latter demonstrate high flexural strength and toughness. Both groups of materials have specialised applications in restorative dentistry and are capable of covering all the indications of dental restorations. The two types of materials, that is, glass ceramics and ceramics, have to be processed in accordance with their properties. As a result, the processing techniques, such as moulding, sintering and machining, will be discussed in detail in addition to the properties of the materials. Additional development possibilities for the materials will be presented on the basis of customer/patient needs and the successful long term use of glass ceramics and ceramics. In this context, it is clear that high performance ceramics and layered composites (consisting of high performance ceramics veneered with glass ceramics) offer the best possible solution for indications in the posterior region of the mouth. In contrast, glass ceramics are used to fabricate inlays and onlays for all parts of the jaw. In addition, glass ceramics can be used to fabricate crowns and small bridges to replace anterior dentition.  相似文献   

4.
《Ceramics International》2021,47(22):31907-31914
All-solid-state batteries have recently attracted much attention for their high energy density and safety. Li2ZrO3-based Li-ion conductors with high electrochemical stability have potential applications for electrolytes in all-solid-state batteries. In this work, comparative investigations of Li2ZrO3 and halogen doped Li2ZrO3 ceramics were conducted by sintering at 700 °C in air or in oxygen-deficient atmosphere which was induced by a simple setup covering with corundum crucible. The analysis of phase composition reveals that the undoped Li2ZrO3 ceramic sintered in air contains pure monoclinic phase, while halogen-doped Li2ZrO3 sintered in air and all ceramics sintered in oxygen-deficient atmosphere are simultaneously composed of monoclinic and tetragonal phases. Li2ZrO3 ceramic with tetragonal phases has higher conductivity (0.28 mS cm−1 for undoped Li2ZrO3) than the pure monoclinic Li2ZrO3 (0.07 mS cm−1), and halogen doping can further enhance the conductivity of Li2ZrO3 ceramics higher than 0.5 mS cm−1 at room temperature.  相似文献   

5.
Dopant segregation at grain boundaries (GBs) in ceramics has been widely reported, while whether similar segregation behavior occurs in glass-ceramics remains unknown. The distribution of dopant in glass-ceramics may be totally different due to the existence of glass phase. This study examines the distribution of Y3+ ions in a ZrO2-SiO2 glass-ceramic. Two samples were prepared by hot pressing, yttrium oxide-doped, and undoped 65 mol% ZrO2-35 mol% SiO2 nanocrystalline glass-ceramics (NCGCs). The NCGCs had the same microstructure, that is, ZrO2 nanoparticles (NPs) embedded in an amorphous SiO2 matrix. XRD results showed that the undoped NCGC was composed of 20.9 wt% (weight percentage) monoclinic ZrO2 (m-ZrO2) and 79.1 wt% tetragonal ZrO2 (t-ZrO2), while the yttrium oxide-doped NCGC was composed of 9.6 wt% m-ZrO2 and 90.4 wt% t-ZrO2. X-ray energy-dispersive spectrometry (EDS) results in scanning electron transmission microscopy (STEM) mode demonstrated that Y3+ ions segregated both on the surface of ZrO2 NPs and within the thin intergranular glass film (with a thickness of approximately 7 Å) between ZrO2 NPs in the yttrium oxide-doped NCGC. Interestingly, no obvious Y signals were detected in the amorphous SiO2 matrix. Density functional theory calculation results showed that Y3+ ions had a strong segregation tendency in the GB area and the segregation of Y3+ ions increased the work of separation of GB layer. These findings provide new understanding of the segregation behavior of dopant in glass-ceramics, which may offer useful guidance for other researchers to tailor the properties of glass-ceramics through GB engineering.  相似文献   

6.
ZrO2-based ceramics are widely used in biomedical applications due to its color, biocompatibility, and excellent mechanical properties. However, low-temperature degradation (LTD) introduces a potential risk for long-term reliability of these materials. The development of innovative nondestructive techniques, which can explore LTD in zirconia-derived compounds, is strongly required. Yttria stabilized zirconia, 3Y-TZP, is one of the well-developed ZrO2-based ceramics with improved resistance to LTD for dental crown and implant applications. Here, 3Y-TZP ceramic powders were pressed and sintered to study the LTD phenomenon by phase transition behavior. The LTD-driven tetragonal-to-monoclinic phase transition was confirmed by XRD. XPS analysis demonstrated that induced LTD reduced the oxygen vacancies which supports these findings. It is proved that after the degradation, the 3Y-TZP ceramics show the decreased dielectric permittivity at terahertz frequencies due to the crystallographic phase transformation. Terahertz nondestructive probe is a promising method to investigate LTD in zirconia ceramics.  相似文献   

7.
《Ceramics International》2016,42(13):14395-14402
This paper reports the production of micro porous ceramics consisting of TiO2 and ZrO2 by direct foaming. ZrO2 particles in a colloidal suspension were partially hydrophobized using propyl gallate as an amphiphile at a suitable pH range of around 3.5–4.5. A TiO2 suspension with different mole ratios was added to the surface modified ZrO2 suspension to obtain ZrTiO4-TiO2 porous ceramics in the sintered sample. The influence of the TiO2 content and calcination temperature on the phase transformation, microstructure, and thermal properties of the materials was determined by thermal analysis, X-ray diffraction, field emission scanning electron microscopy, and dilatometry. The crystallization of ZrTiO4 (orthorhombic) was observed at 1100 °C on the thermal hysteresis curve due to anisotropic thermal expansion. The compressive load and displacement of the sintered porous ceramics samples were calculated using the Hertzian indentation method.  相似文献   

8.
Balance of better mechanical strength and good translucency for dental restorative materials is always a challenge. A translucent glass ceramic/ceramic with improved mechanical properties or a strong glass ceramic/ceramic with good translucency would therefore be interesting for dental application. Nanocrystalline glass ceramics (NCGC) attract a lot attention because of their superior optical and mechanical properties. This study aims to obtain ZrO2-SiO2 nanocrystalline glass-ceramic that possesses high mechanical strength as well as excellent translucency by controlling the content, size, and connection of nanocrystalline ZrO2 in a ZrO2-SiO2 glass-ceramic material. Toward this end, well-homogenized nano-powders with three different compositions, 45%ZrO2-55%SiO2 (molar ratio, 45Zr), 55%ZrO2-45%SiO2 (55Zr), and 65%ZrO2-35%SiO2 (65Zr), were synthesized, followed by a fast sintering process. Highly-translucent nanocrystalline glass ceramics composed of tetragonal ZrO2 were obtained. Samples with high zirconia content showed that the structure of the skeleton was predominately built by nano-sized ellipsoidal ZrO2 particles bonded by grain boundaries, with amorphous SiO2 filling the voids between the ZrO2 particles. The achieved flexural strength measured by piston-on-three-ball test was as high as 1014 MPa. To our knowledge, this is one of the highest flexural strength values of glass ceramics ever reported, which is higher than transparent zirconia and alumina ceramics. The 3D structure of nanocrystalline zirconia in silica matrix did enhance the flexural strength of the NCGC. The results of this study suggest that the new ZrO2-SiO2 NCGC has great potential of using as dental restoration.  相似文献   

9.
ZrO2 powders of various particle sizes (0.15, 0.7, 500 µm) were used to simulate loose powder bed sintering to prepare BF–BT piezoelectric ceramics. The phase structure, dielectric properties, ferroelectric properties, and piezoelectric properties were compared with the samples sintered by the conventional powder bed method (i.e., powder of the same composition as the sample). Results showed that the use of loose ZrO2 powder bed could improve the heat conduction rate and the sintering quality of bulk BF–BT piezoelectric ceramics. The XPS results showed that the samples sintered with 500 µm ZrO2 powder beds had the lowest concentration of Fe2+, exhibited the largest piezoelectric coefficients (d33 = 201 pC/N). In contrast, the sample sintered with a conventional powder bed under the same sintering conditions had a piezoelectric coefficient d33 of 156 pC/N.  相似文献   

10.
《Ceramics International》2023,49(8):12105-12115
In this study, iron(III) oxide (Fe2O3)-doped zirconia (3Y-TZP) ceramics with desirable mechanical and color properties for dental restorations were fabricated by stereolithography-based additive manufacturing. Six zirconia ceramic paste specimens with high solid loading (58 vol%) and reasonably low viscosity were prepared according to doped content of Fe2O3 (0–0.14 wt%). Zirconia ceramics were fabricated using commercial stereolithography three-dimensional printer and sintered at 1500 °C for 4 h to obtain final dense parts with a relative density of above 99%. Effects of Fe2O3 doping on microstructure, mechanical properties, and color of 3Y-TZP ceramics were investigated. Results indicate that Fe2O3 exhibited little effect on the shrinkage and density of colored ceramics compared to uncolored ceramics. Average grain size of 3Y-TZP ceramics sintered at 1500 °C increased with increasing content of Fe2O3. X-ray diffraction analysis showed that tetragonal phase was dominant phase structure of white and colored 3Y-TZP ceramics, and monoclinic phase increased with increasing Fe2O3 content. Compared to uncolored specimens, Fe2O3 exhibited negative effects on three-point flexural strength (mean > 879.70 MPa), Vickers hardness (mean > 12.14 GPa), and indentation fracture toughness (mean > 4.23 MPa m1/2) of the colored specimens. With the increase in the content of Fe2O3 from 0 to 0.14 wt%, L* (black–white index) value decreased from 83.39 to 79.54, a* (green–red index) value increased from −2.28 to −0.74, and b* (blue–yellow index) value increased from 1.15 to 17.94. Chromaticity (L*, a*, b*) fell within the range of natural tooth color, indicating that it is suitable for dental application because of its color compatibility with natural teeth. In addition, the transmittance slightly decreased with increasing Fe2O3 content. Thus, Fe2O3-doped 3Y-TZP ceramics can be used as potential candidates for aesthetic dental restoration materials.  相似文献   

11.
To reduce the production costs of glass-ceramics and broaden the application field of solid waste in steel industry, low-density and high-strength glass-ceramics were produced by using blast furnace slag as the basic material, choosing glass fiber and water glass as the strengthening agents. The effects of glass fiber and water glass on the phase composition, microstructure, apparent density, water absorption and compressive strength of glass–ceramics were investigated. The results show that the rod structure of glass fiber can be retained in the sintered samples and high content of diopside and augite significantly improve the compressive strength of glass-ceramics. Tiny spherical crystalline phases can be obtained for the glass-ceramics soaked in the moderate concentration of water glass. The BGW-2 samples fabricated with 70% blast furnace slag, 30% glass fiber and 4% water glass, exhibit excellent comprehensive properties. The bulk density, water absorption and compressive strength of BGW-2 are 1.76 g/cm3, 2.26% and 68 MPa, respectively. Consequently, using blast furnace slag to prepare glass-ceramics can be another applicable way to utilize blast furnace slag efficiently.  相似文献   

12.
The possibility of using carbonic acid for the plasma chemical method of preparing finely disperse ZrO2 powders with flake particles is investigated. The optimum parameters of the technological process and the basic properties of stabilized ZrO2 recommended for the production of high-strength ceramics are determined.Translated from Steklo i Keramika, No. 12, pp. 12–14, December, 1995.  相似文献   

13.
The price of lithium-containing minerals and other chemical materials continues to increase, resulting in an increase in the production cost of Li2O-Al2O3-SiO2 (LAS) system glass-ceramics. In the LAS glass-ceramics component, the reduction in the amount of Li2O used can reduce the cost of the product. It is worthwhile to study whether it is possible to prepare glass-ceramics with low expansion properties under low Li2O content. The effect of Li2O content on the glass-ceramics of LAS system was studied. In this paper, spodumene was used as the main raw material, and TiO2 and ZrO2 were added as crystal nucleating agents to prepare transparent glass-ceramics with low expansion coefficient. The effects of the change of Li2O content on the crystal phase and microstructure of glass-ceramics were investigated by XRD, DSC, FTIR and SEM. The results show that the main crystalline phase of the low expansion transparent glass-ceramics is β-quartz solid solution. When Li2O content is in the range of 2.99 wt% to 4.13 wt%, low expansion glass ceramics can be prepared by an appropriate method. With the increase of Li2O content, the average coefficient of thermal expansion (CTE) in the temperature range of 30 °C–300 °C shows a decreasing trend. When Li2O content is in the range of 3.51 wt% to 4.13 wt%, the thermal expansion coefficient of the glass ceramics is extremely small, and even a negative expansion coefficient occurs.  相似文献   

14.
《应用陶瓷进展》2013,112(8):458-465
ABSTRACT

The new inorganic colloid is a particle-free decomposable binder that can solve the nozzle clogging problem and precipitate zirconia particle upon heating. The inorganic colloidal binder can be used as a binder precursor to replace commonly used PVP binder in printing ZrO2 ceramics parts using binder-jet technology. Green bodies were printed using inorganic colloid binders with different saturation level and PVP binder separately, then cured and sintered. The effects of binder saturation level and sintered temperature on the properties of the green and sintered bodies were investigated. After being deposited into the powder bed interstices and cured, the inorganic colloidal binder containing zirconium basic carbonate decomposes and forms ZrO2 ceramic particles that are filled the interstices and sintered to provide bonding strength to the printed parts. Samples with inorganic colloidal binder eventually perform better surface quality and denser sintered body than polymer binder when using same saturation ratio.  相似文献   

15.
In this work, an aerodynamic levitation technology (ALT) was utilized to prepare ZrO2-SiO2 glass-ceramics with two different ZrO2 contents, that is, 35 mol% and 50 mol%. The glass-ceramics were partially melted at ∼2000°C or fully melted at ∼3000°C by ALT, followed by rapid quenching to obtain spherical glass-ceramic beads. The phase compositions and microstructures of the glass-ceramics were characterized. Crystallization of ZrO2 occurred during the solidification process and ZrO2 content, processing temperature, and the addition of yttrium (3 mol%) affected the crystalline phase of ZrO2. No ZrSiO4 or crystalline SiO2 were formed during the solidification process and the glass-ceramics were away from thermodynamic equilibrium due to rapid quenching. The glass-ceramics showed a microstructure of irregular-shaped ZrO2 micro-aggregates embedded in an amorphous SiO2 matrix, with lamellar twins and lattice defects formed within ZrO2 crystals. For samples prepared at ∼3000°C, a liquid-liquid phase separation occurred in the melt, which eventually resulted in the formation of large and irregular-shaped ZrO2 aggregates. In comparison, for samples prepared at ∼2000°C, pre-existed ZrO2 crystals formed during heating acted as nucleation sites during the cooling process, followed by grain growth to form large ZrO2 aggregates. Solidification and microstructure formation mechanisms were proposed to elucidate the solidification process during rapid cooling and the microstructure of the glass-ceramics obtained.  相似文献   

16.
《Ceramics International》2020,46(14):22262-22269
MgO-ZrO2 ceramics were prepared using MgO powder calcined with crystal magnesite as starting material and TiO2 as an additive. Samples were mixed with different mass fractions of ZrO2 powder and sintered at 1600 °C for 2 h. Effects of added amounts of ZrO2 and TiO2 on the performance of MgO–ZrO2 ceramics were investigated. Results showed that increase in mass fraction of added ZrO2 or addition of small amount of TiO2 significantly promoted performance of MgO–ZrO2 ceramics. Moreover, the improvement effect of TiO2 was more obvious than that of ZrO2. Addition of TiO2 promoted solid solution reaction of ZrO2 and MgO, which was the main reason for improved densification. In addition, TiO2 and CaO form CaTiO3, whereas free SiO2 and MgO form Mg2SiO4. These two compounds filled the pores between MgO and ZrO2 grains and improved densification, compressive strength, and thermal shock resistance.  相似文献   

17.
《Ceramics International》2022,48(15):21355-21361
In this study, a transparent and environmentally friendly Li2O–Al2O3–SiO2 (LAS) glass-ceramic was prepared by melt-quenching and two-step heat treatment. The influence of the substitution amount of ZrO2 by SnO2 on the crystallization, microstructure, transparency, and mechanical properties of LAS glass and glass-ceramics was investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Ultraviolet–visible Spectrophotometer, three-point bending strength test, and microhardness test. The results indicate that the main crystalline phase of LAS glass ceramics was a β-quartz solid solution when heat treated at 780 °C for 2 h and 870 °C for 1.5 h. When the substitution amount of ZrO2–SnO2 increased from 0.4 mol% to 2.5 mol%, the grain size and thermal expansion coefficient of LAS glass-ceramics first decreased and then increased, and the crystallinity first increased and then decreased. When the substitution amount of ZrO2–SnO2 was 0.8 mol%, the transparency of the LAS glass-ceramics was maximum, the bending strength was 96 MPa, and the Vickers hardness was 10.9 GPa.  相似文献   

18.
In this study, investigations of sintering behavior and properties were performed on lithium-stabilized Na-β''-alumina (LiSBA) ceramics with and without 15?wt% 8?mol% Y2O3 stabilized ZrO2 (8YSZ) addition synthesized by solid phase reaction. Changes of phase composition, relative density, and grain size in the ceramics sintered at different temperature were analyzed. It was shown that phase transformation in sintering ceramics was controlled by relationship between the Na2O evaporation and Li+ ions stabilization, while microstructure evolution was controlled by pore-boundary interaction. LiSBA with YSZ addition (Zr-LiSBA) showed more significant variation of β'' phase fractions, slower grain growth and faster densification with increasing sintering temperature, which were caused by enhanced Na2O evaporation and gas transport by oxygen ion conductor ZrO2 as well as the drag effect by second phase particles of YSZ in Zr-LiSBA ceramics. Zr-LiSBA specimens sintered at optimized condition achieved higher Vickers microhardness and intermediate Na+ ion conductivity.  相似文献   

19.
Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics with outstanding mechanical properties and aesthetic origins are expected to be used in dental implant applications. However, tetragonal zirconia ceramics are not bioactive, which affect the osseointegration and reliability as dental implant materials. Herein, in this study, Y-TZP ceramics were modified by grain-boundary activation via coating a bioactive glass (BG) sol with different content on the crystal surfaces of zirconia powder and followed by being gelled, dried, granulated, low-temperature treated, molded and sintered at 1450°C for 3 h in air. The effects of BG content on the morphology, phase compositions, mechanical properties, in vitro mineralization ability and cell biological properties of the bioactivity modified Y-TZP ceramics were evaluated. The BG additive did not affect the tetragonal–monoclinic phase transformation of ZrO2. However, the addition of BG decreased the flexural strength of the modified Y-TZP ceramics compared to that of Y-TZP. The in vitro mineralization results showed that a homogeneous apatite layer was produced on the surface of the Y-TZP ceramics when they were immersed in the simulated body fluid for 21 days. The cell response results indicated that the bioactive surface modification of Y-TZP ceramics could promote cell adhesion, propagation and osteogenic differentiation performance. Thus, our research results suggest that the highly bioactive Y-TZP ceramics could be a potential candidate for dental implant material.  相似文献   

20.
Commercial Y2O3 powder was used to fabricate highly transparent Y2O3 ceramics with the addition of ZrO2 via slip casting and vacuum sintering. The effects of ZrO2 addition on the transparency, grain size and lattice parameter of Y2O3 ceramics were studied. With addition of ZrO2 the transparency of Y2O3 ceramics increased markedly and the grain size of Y2O3 ceramics decreased markedly by cation diffusivity mechanism and the lattice parameter of Y2O3 ceramics slightly decreased. The highest transmittance (at wavelength 1100 nm) of the 5.0 mol% ZrO2–Y2O3 ceramic (1.0 mm thick) sintered at 1860 °C for 8 h reached 81.7%, very close to the theoretical value of Y2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号