首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2015,41(4):5888-5893
The present work investigated the influence of the composition induced structure evolution on the electrocaloric effect in lead-free (0.935−x)Bi0.5Na0.5TiO3–0.065BaTiO3xSrTiO3 (BNBST, BNBSTx) ceramics. It was found that broad ∆T peak could be observed for all compositions and the electrocaloric strength α (αTmaxE) in BNBST0.02 could reach as high as 0.27 K mm/kV. The increase of the SrTiO3 concentration led to a shift of ∆Tmax to a lower temperature, resulting in a large near room-temperature electrocaloric strength α of 0.17 K mm/kV in BNBST0.22.  相似文献   

2.
The phase diagram of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 was completed and investigations on polarization and strain in this system were carried out. (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3-ceramics were prepared by conventional mixed oxide processing. The depolarization temperature (Td), the temperature of the rhombohedral–tetragonal phase transition (Tr–t) and the Curie temperature (Tm) were determined by measuring the temperature dependence of the relative permittivity. All solid solutions of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 show relaxor behavior (A-site relaxor). From XRD-measurements a broad maximum of the lattice parameter can be observed around x = 0.5 but no structural evidence for a morphotropic phase boundary was found. SEM-analysis revealed a decrease of the grain size for increasing SrTiO3-content. At room temperature a maximum of strain of about 0.29% was found at x = 0.25 which coincides with a transition from a ferroelectric to an antiferroelectric phase. The temperature dependence of the displacement indicates an additional contribution from a structural transition (rhombohedral–tetragonal), which would be of certain relevance for the existence of a morphotropic phase boundary.  相似文献   

3.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

4.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

5.
(1 ? x)Bi0.5Na0.5TiO3x(Na0.53K0.44Li0.04)(Nb0.88Sb0.08Ta0.04)O3 (BNT–xNKLNST) with x = 0–0.10 lead-free piezoelectric ceramics were prepared by a solid state method, and the structure and electrical properties were investigated in this study. It is found that a morphotropic phase boundary (MPB) of rhombohedral (R) and tetragonal (T) phase exists in the range of 0.03  x  0.05 and the structure changes to paraelectric phase when x > 0.07. The samples with x = 0.05 exhibit improved electrical properties owing to the formation of MPB, which are as follows: piezoelectric constant d33 = 120 pC/N, remnant polarization Pr = 39.4 μC/cm2 and coercive field Ec = 3.6 kV/mm. These results indicate that the enhanced piezoelectric properties for BNT can be achieved by forming the coexistence of R and T phase.  相似文献   

6.
Lead-free x Bi0.5Na0.5TiO3y BaTiO3z Bi0.5K0.5TiO3 piezoelectric ceramics were synthesized by a conventional solid state reaction method. The microstructure, ferroelectric and piezoelectric properties of the ceramics were investigated. Structure measurements by X-ray diffraction with Rietveld refinement have allowed us to specify more precisely the morphotropic phase boundary (MPB) in this system. For (1 ? x) BNT–x BT solid solution ceramics, the 0.94 BNT–0.06 BT morphotropic composition shows the higher values with d33 = 170 pC/N, kp = 0.35 and kt = 0.53. In the case of (1 ? x) BNT–x BKT compositions, the d33, kp and kt are, respectively, 137 pC/N, 0.39 and 0.54 for the 0.80 BNT–0.20 BKT ceramic. On the other hand, the ternary 0.865 BNT–0.035 BT–0.100 BKT morphotropic composition shows high piezoelectric constant and electromechanical coupling factors (d33 = 133 pC/N, kp = 0.26 and kt = 0.57).  相似文献   

7.
Lead-free [Bi1−y(Na1−xyLix)]0.5BayTiO3 (BNLB-x/y) piezoelectric ceramics were prepared by sintering the constituent oxides, and their piezoelectric and ferroelectric properties studied. The results of X-ray diffraction (XRD) suggest that Li+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 (BNT) lattices to form a solid solution with a single-phase perovskite structure. The ceramics can be well sintered at 1100–1150 °C. The introduction of Li+ and Ba2+ into Bi0.5Na0.5TiO3 significantly decreases the coercive field, Ec but maintains the large remanent polarization, Pr of the materials. The ceramics exhibit relatively good piezoelectric properties and very strong ferroelectricity: piezoelectric constant, d33 = 208 pC/N, planar electromechanical coupling factor, kp = 37.0%, remanent polarization, Pr = 38.5 μC/cm2, coercive field, Ec = 3.27 kV/mm. The depolarization temperature, Td of BNLB-0.075/0.04 ceramics is about 190 °C.  相似文献   

8.
We have investigated the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system, with its complex perovskite structure, as a promising material for piezoelectric applications. The NBT–KBT samples were synthesized using a solid-state reaction method and characterized with XRD and SEM. Room-temperature XRD showed a gradual change in the crystal structure from tetragonal in the KBT to rhombohedral in the NBT, with the presence of an intermediate morphotropic region in the samples with a compositional fraction x between 0.17 and 0.25. The fitted perovskite lattice parameters confirmed an increase in the size of the crystal lattice from NBT towards KBT, which coincides with an increase in the ionic radii. Electrical measurements on the samples showed that the maximum values of the dielectric constant, the remanent polarization and the piezoelectric coefficient are reached at the morphotropic phase boundary (MPB) (? = 1140 at 1 MHz; Pr = 40 μC/cm2; d33 = 134 pC/N).  相似文献   

9.
A series of (1-x)(0.65BaTiO3-0.35Bi0.5Na0.5TiO3)-xNa0.73Bi0.09NbO3 ((1-x)BBNT-xNBN) (x = 0–0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The microstructure, dielectric property, relaxor behavior and energy storage property were systematically investigated. X-ray diffraction results reveal a pure perovskite structure and dielectric measurements exhibit a relaxor behavior for the (1-x)BBNT-xNBN ceramics. The slim polarization electric field (P-E) loops were observed in the samples with x  0.02 and the addition of Na0.73Bi0.09NbO3 (NBN) could decrease the remnant polarization (Pr) of the (1-x)BBNT-xNBN ceramics obviously. The sample with x = 0.08 exhibits the highest energy storage density of 1.70 J/cm3 and the energy storage efficiency of 82% at 172 kV/cm owing to its submicron grain size and high relative density. These results show that the (1-x)BBNT-xNBN ceramics may be promising lead-free materials for high energy storage density capacitors.  相似文献   

10.
《Ceramics International》2016,42(15):16798-16803
Na0.5Bi0.5TiO3 (NBT) based oxide-ion conductor ceramics have great potential applications in intermediate-temperature solid oxide fuel cells (SOFCs) and oxygen sensors. Na0.5Bi0.49Ti1−xMgxO3−δ ceramics with x=0, 0.01, 0.02, 0.03, 0.05 and 0.08 were prepared by conventional solid-state reaction. XRD measurement and SEM analysis revealed the formation of pure perovskite structures without secondary phase. MgO doping greatly decreased the sintering temperature and inhibited grain growth. AC impedance spectroscopy measurement was adopted to measure the total conductivity, which was found to increase with MgO doping content ranging from 0 to 3 mol% and subsequently to decrease. High oxygen ionic conductivity σt=0.00629 S/cm was achieved for sample doped with 3 mol% MgO at 600 °C in air atmosphere.  相似文献   

11.
《Ceramics International》2007,33(6):1041-1046
Lead-free (1  x)BaTiO3xBi0.5Na0.5TiO3 (x = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3) ferroelectric ceramics were fabricated by the conventional ceramic technique. Sintering was made at 1200 °C for 2–4 h in air atmosphere. The crystal structure was investigated by X-ray diffraction. The dielectric and ferroelectric properties were also studied. Room temperature permittivity was found to decrease as Bi0.5Na0.5TiO3 (BNT) content increases. Only the sample with 0.3 mol BNT was found to have relaxor behaviour. The Tc shifted slightly only for BNT addition lower than 0.1 mol. The highest Tc (about 150 °C) was obtained for 0.2 mol BNT addition. The remanent polarization, Pr, decreases whereas the coercive field, Ec, increases monotonously as the BNT content increases.  相似文献   

12.
《Ceramics International》2016,42(8):9660-9666
Lead-free 0.99[(1−x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics were prepared by a conventional solid-state reaction process. The ferroelectric properties, and strain behaviors were characterized. Increase of the (Bi0.5K0.5)TiO3 content induces a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic phase. Accordingly, the ferroelectric order is disrupted significantly with the increase of (Bi0.5K0.5)TiO3 content and the destabilization of the ferroelectric order is accompanied by an enhancement of the unipolar strain, which peaks at a value of 0.35% (corresponding to a large signal d33 of 438 pm/V) in samples with 20 mol% (Bi0.5K0.5)TiO3 content. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced nonpolar pseudocubic-to-polar ferroelectric phase transformation.  相似文献   

13.
The effects of composition, sintering temperature and dwell time on the microstructure and electrical properties of (0.75 ? x)BiFeO3–0.25BaTiO3xBi0.5K0.5TiO3 + 1 mol% MnO2 ceramics were studied. The ceramics sintered at 1000 °C for 2 h possess a pure perovskite structure and a morphotropic phase boundary of rhombohedral and pseudocubic phases is formed at x = 0.025. The addition of Bi0.5K0.5TiO3 retards the grain growth and induces two dielectric anomalies at high temperatures (T1  450–550 °C and T2  700 °C, respectively). After the addition of 2.5 mol% Bi0.5K0.5TiO3, the ferroelectric and piezoelectric properties of the ceramics are improved and very high Curie temperature of 708 °C is obtained. Sintering temperature has an important influence on the microstructure and electrical properties of the ceramics. Critical sintering temperature is 970 °C. For the ceramic with x = 0.025 sintered at/above 970 °C, large grains, good densification, high resistivity and enhanced electrical properties are obtained. The weak dependences of microstructure and electrical properties on dwell time are observed for the ceramic with x = 0.025.  相似文献   

14.
(1?x?y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiFeO3 (BNKFT-x/y with 0.12≤x≤0.24, 0≤y≤0.07) lead-free piezoelectric ceramics have been prepared by the combustion technique. The effects of amounts of x and y on structures and electrical properties were examined. Powders and ceramics can be well calcined and sintered at 750 °C for 2 h and 1025–1050 °C, respectively. The results indicated that the crystalline structure and microstructure changed with the increase of x and y concentrations. XRD results of BNKFT-x/0.03 and BNKFT-0.18/y ceramics with 0.12≤x≤0.24 and 0≤y≤0.07 showed the rhombohedral–tetragonal morphotropic phase boundary (MPB). The addition of y caused a promoted grain growth while the addition of x suppressed the grain growth. The highest density (ρ=5.85 g/cm3), superior dielectric properties at Tc (εr=7846 and tan δ=0.02), remnant polarization measured at 40 kV/cm (Pr = 20.1 μC/cm2) and piezoelectric coefficient (d33=213 pC/N) were obtained for x=0.18 and y=0.03.  相似文献   

15.
《Ceramics International》2016,42(9):10619-10623
Lead-free piezoelectric ceramics, Sr1−x(K0.5Bi0.5)xBi2Nb2O9 (SKBN-x, x=0, 0.2, 0.5, 1.0), were synthesized by a conventional solid-state reaction. Structural and electrical properties of SKBN-x ceramics were investigated. X-ray diffraction analysis suggested that the substitution led to the formation of a layered perovskite structure. Plate-like morphologies for the grains were clearly observed in all the samples, which are characteristic for layer-structure Aurivillius compounds. The Curie temperature (Tc) is found to shift to higher temperature from 445 °C to 509 °C with increasing (K, Bi) content. Excellent remanent polarization (2Pr∼15 μC/cm2) were obtained for SKBN-0.2 ceramic. High piezoelectric coefficient of d33∼21  pC/N were obtained for the samples at x=0.5. Additionally, thermal annealing studies indicated that the piezoelectric coefficient (d33) of SKBN-0.5 was unchanged even if annealing temperature increased to be 450 °C, demonstrating the ceramics are the promising candidates for high-temperature applications.  相似文献   

16.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

17.
(1?x)BaTiO3xK0.5Bi0.5TiO3 (abbreviated as BT–KBT, 0.10≦x≦0.15) dielectric ceramics were prepared by a conventional oxide mixing method. The effects of KBT content on the densification, microstructure and dielectric properties of BT ceramics were investigated. The density characterization results show that the addition of KBT significantly lowered the sintering temperature of BT ceramics to about 1280 °C. The XRD results showed that the phase compositions of all samples were pure tetragonal phases. The dielectric constant and dielectric loss firstly increased and then decreased with the increase of KBT. In addition, dielectric constant and dielectric loss versus frequency were characterized in the frequency range from 100 Hz to 2 MHz. It is found that the dielectric constant and the dielectric loss changed with the increase of KBT contents regularly.  相似文献   

18.
Effect of excess CuO additive on the sintering behavior and piezoelectric properties of Bi0.5(Na82K0.18)0.5TiO3 ceramics was investigated. The addition of small amount of excess CuO as low as 1 mol% was quite effective to lower the sintering temperature (Ts) of BNKT ceramics down to 975 °C while their piezoelectric properties were degraded by Cu doping. However, the electric field-induced strain was markedly enhanced by further addition of Nb2O5 with CuO without elevating Ts. The normalized strain Smax/Emax of 427 pm/V was obtained with a specimen sintered with 0.02 mol CuO and 0.03 mol Nb2O5 in excess.  相似文献   

19.
Textured (Na,K)0.5Bi0.5TiO3 ceramics were fabricated by reactive-templated grain growth in combination with tape casting. The effects of sintering conditions on the grain orientation and the piezoelectric properties of the textured (Na,K)0.5Bi0.5TiO3 ceramics were investigated. The results show that the textured ceramics have microstructure with plated-like grains aligning in the direction parallel to the casting plane. The ceramics exhibit {h 0 0} preferred orientation and the degree of orientation is larger than 0.7. The degree of grain orientation increases with the increasing sintering temperature. The textured ceramics show anisotropy dielectric and piezoelectric properties in the directions of parallel and perpendicular to the casting plane. The ceramics in the perpendicular direction exhibit better dielectric and piezoelectric properties than those of the nontextured ceramics with the same composition. The optimized sintering temperature is 1150 °C where the maximum d33 of 134 pC/N parallel to casting plane, the maximum k31 of 0.31, and the maximum Qm of 154 in perpendicular direction were obtained.  相似文献   

20.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号