共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACTOil palm empty fruit bunch (OPEFB) was heat treated at 180°C using a vacuum oven for one hour, extruded and compounded with high-density polyethylene at 10%, 20% and 30% weight fraction. The composites then were injection moulded into dumb-bell shaped specimens. The effect of composition and heat treatment on the thermal properties of composites were investigated using Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The tensile and flexural properties were also tested using an Instron Universal Testing Machine. TGA shows an increase in the degradation peak temperature of the heat-treated composites. DSC revealed an increasing trend in the degree of crystallinity (Xc) of the matrix as the heat-treated empty fruit bunch was used as a filler. An increment in the tensile modulus and tensile strain were observed for the treated fibre composites. In addition, the tensile strength value was increased for treated fibre composites with lower fibre loading. 相似文献
2.
《Journal of the European Ceramic Society》2019,39(12):3491-3497
Hierarchical tantalum-graphene flakes reinforced zirconia (3Y-TZP) ceramic matrix composites were fabricated by wet processing route and freeze drying followed by spark plasma sintering (SPS). The microstructures and mechanical properties were investigated. The results show that graphene and Ta particles are homogeneously dispersed in the ceramic matrix and the optimum sintering temperature for complete densification of composites and thermal reduction of the graphene oxide is 1500 °C. The addition of dual reinforcements of tantalum microflakes and graphene nanoflakes results in significant improvement in the mechanical properties of the ZrO2 matrix. Approximately a 30% increase in flexural strength vs the zirconia-Ta composite and a 175% increase in fracture toughness vs the monolithic zirconia have been achieved by introducing 0.5 vol% GO and 20 vol% Ta particles. 相似文献
3.
The biodegradability and mechanical and thermal properties of composite materials made from glycidyl methacrylate-grafted poly(butylene succinate) (PBS-g-GMA) and palm fibre (PF) were evaluated. Composites of PBS-g-GMA and PF (PBS-g-GMA/PF) exhibited noticeably superior mechanical properties compared with those of PBS/PF, due to greater compatibility of PBS-g-GMA with PF. The dispersion of PF in the PBS-g-GMA matrix was highly homogeneous as a result of condensation reactions. In addition, the PBS-g-GMA/PF composites were more easily processed due to their lower melt torque. The water resistance of PBS-g-GMA/PF was higher than that of PBS/PF, although the weight loss of composites buried in soil compost indicated that both were biodegradable, especially at high levels of PF substitution. The PBS/PF and PBS-g-GMA/PF composites were more biodegradable than pure PBS, which implies a strong connection between PF content and biodegradability. 相似文献
4.
Tobias Lehnert Yuan Shi Daniel Cepli Raouf Jemmali Thomas Wamser Andreas Lauer Jan Roßdeutscher Britta Panthen 《International Journal of Applied Ceramic Technology》2023,20(3):1804-1817
Oxide ceramic matrix composites (O-CMCs) have a high potential for usage in thermal protection systems or combustion chambers because of their low weight, temperature- and corrosion stability as well as non-brittle failure behavior. Mechanical property changes over their lifetime due to operational loads are not well understood. Moreover, mechanical properties from planar samples under laboratory conditions often differ substantially from upscaled components with complex geometries. In this work, the influences of curvature and preloading conditions were investigated experimentally using modeling to determine boundary conditions. Effects of curvature and trends among preload conditions were determined, with high-cycle-fatigue-preload (HCF) reducing strength and Young’s Modulus by 15% compared to their original values where low-cycle-fatigue-preload (LCF) had smaller effect. The low impacts of high temperatures and small-to-medium loads on the properties of O-CMCs makes them an interesting choice for high-temperature combustive environments. 相似文献
5.
Renato S. M. Almeida Hedieh Farhandi Kamen Tushtev Kurosch Rezwan 《International Journal of Applied Ceramic Technology》2020,17(4):1574-1581
The production of complex-shaped all-oxide ceramic matrix composites (Ox-CMC) is somewhat restricted by their current processing methods, as well as by the lack of applicable joining techniques. Thus, we present a new method for joining Ox-CMCs based on the gelation of slurries with the polysaccharide polymer alginate. For this investigation, Nextel 610/alumina-zirconia composites were produced using alginate as binder and aluminum acetate as gelling agent. The joining capabilities of this technique were investigated with microstructural analyses and single-lap compression shear tests. For that, a slurry-containing alginate was used to join two composite plates at different stages of the processing: gel state, dried green body and after sintering. Joining composites plates in their gel or green state was successful as the joints showed shear strength values similar to the interlaminar shear strength of the composites plates. The quality of the joints was attributed to the interactions between the alginate chains of the composite plates and the joint. We also show that even the joining of already sintered Ox-CMCs is feasible. However, densification cracks and lower shear strength are observed for such cases. 相似文献
6.
Hybridized zirconium amorphous calcium phosphate (ACP)-filled methacrylate composites make good calcium and phosphate releasing materials for anti-demineralizing/remineralizing applications with low mechanical demands. The objective of this study was to assess the effect of the particle size of the filler on the mechanical properties of these composites. Photo-curable resins were formulated from ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate. Camphorquinone and ethyl-4-N,N-dimethylaminobenzoate were utilized as components of the photoinitiator system. After 2 h of mechanical milling in isopropanol, an approximate 64 % reduction in the median particle diameter was observed [27.48 μm vs. 9.98 μm] for unmilled and milled wet ACP, respectively. Dry ACP showed a 43 % reduction in particle size from pre- to post-milling. As well as dry composites, those that had been immersed in aqueous media were evaluated for their Young's Modulus, water sorption, biaxial tensile, three-point flexural and diametral tensile strength. Mechanically milling the filler increased the volume of fine particles in the composite specimens, resulting in a more homogeneous intra-composite distribution of ACP and a reduction in voids. In turn, less water diffused into the milled composites upon aqueous exposure, and they showed a marked improvement in biaxial flexure strength and a moderate improvement in flexural strength over composites with unmilled ACP. The demonstrated improvement in the mechanical stability of milled Zr-ACP composites may help in extending their dental applicability. 相似文献
7.
《Journal of the European Ceramic Society》2022,42(7):3282-3289
To overcome the main limitation of oxide ceramic matrix composites (Ox-CMCs) regarding thermal degradation, the use of matrix doping is analyzed. Minicomposites containing Nextel 610 fibers and alumina matrices with and without MgO doping were produced. The thermal stability of the minicomposites was evaluated considering their microstructure and mechanical behavior before and after thermal exposures to 1300 °C and 1400 °C for 2 h. Before heat treatment, both composite types showed very similar microstructure and tensile strength. After heat treatment, densification, grain growth and strength loss are observed. Furthermore, the MgO dopant from the matrix diffuses into the fibers. As a result, abnormal fiber grain growth is partially suppressed and MgO-doped composites show smaller fiber grains than non-doped composites. This more refined microstructure leads to higher strength retention after the heat treatments. In summary, doping the matrix can increase the overall thermal stability without impairing the room-temperature properties of Ox-CMCs. 相似文献
8.
《应用陶瓷进展》2013,112(6):286-290
AbstractStoichiometric MXO4 type compounds, where M represents a rare earth or yttrium ion and X a pentavalent cation, have been prepared using mixed oxide and liquid precursor methods. Their stability in relation to Al2O3, mullite, and yttrium–aluminium garnet (YAG) has been determined by examining interfaces exposed in reaction couples after heating to 1400°C. Complex oxides of the phosphate and vanadate type are shown to possess the desired chemical stability with some of the candidate oxides and can be considered as suitable interphase materials. Close control over composition and homogeneity is shown to be important in determining their performance as potential interphases due to the possible formation of a liquid phase which can react readily with the oxide matrix or fibre. Selected MXO4 compounds have also been successfully deposited on to oxide substrates and woven oxide fibres using liquid precursors and RF magnetron sputtering techniques, yielding controlled and uniform fibre coatings. 相似文献
9.
Pavol Hvizdoš Viktor Puchý Annamária Duszová Ján Dusza Csaba Balázsi 《Ceramics International》2012,38(7):5669-5676
Tribological behaviur of carbon fibrous phases (nanofibers and nanotubes) containing composites with Si3N4, ZrO2 and Al2O3 matrices was studied by pin-on-disk technique in conditions of dry sliding. Coefficients of friction and wear rates were measured, wear damage mechanisms were observed and identified. The resulting tribological behaviur was related to microstructure and mechanical properties of respective materials. Electrical conductivity was measured in wide range of frequencies by two-point method and effect of volume fraction and distribution of CNTs and CNFs on percolation threshold was evaluated. Both coefficient of friction and electrical resistivity decreased with increasing amount of carbon phases, in both cases the nanofibers were more efficient than the nanotubes. The wear resistance in most cases decreased but for Si3N4–CNT composite a certain optimum (~5 wt.% CNT) was found. 相似文献
10.
V. Rubio J. Binner S. Cousinet G. Le Page T. Ackerman A. Hussain P. Brown I. Dautremont 《Journal of the European Ceramic Society》2019,39(4):813-824
Ultra-high temperature ceramic composites based on carbon fibre, Cf, preforms impregnated with hafnium diboride, HfB2, powder and then densified with carbon by chemical vapour infiltration, CVI, have been mechanically tested to measure the room temperature flexural, interlaminar shear, compressive and tensile strengths. The latter was also measured at 1000 °C. All the composites suffered a degree of delamination during the different mechanical tests but the strength values obtained were at least equal to, or better than, those previously reported in the literature for ultra-high temperature ceramic (UHTC)-based composites. Importantly, in spite of the oxidation of the tensile samples tested at 1000 °C, similar tensile strength values were obtained at both temperatures, suggesting that the materials can resist elevated temperatures. The samples tested at higher temperature did show greater evidence of fibre pull out, possibly due to a weaker fibre-matrix interface as a result of oxidative degradation. The results also suggested that the 0° orientation plies in the Cf preform structure offered greater resistance to mechanical stresses; this suggests that composites can now be designed to offer even greater strength values. 相似文献
11.
I. H. Tavman 《应用聚合物科学杂志》1996,62(12):2161-2167
Thermal conductivity and mechanical properties such as tensile strength, elongation at break, and modulus of elasticity of aluminum powder-filled high-density polyethylene composites are investigated experimentally in the range of filler content 0–33% by volume for thermal conductivity and 0–50% by volume for mechanical properties. Experimental results from thermal conductivity measurements show a region of low particle content, 0–12% by volume, where the particles are distributed homogeneously in the polymer matrix and are not interacting with each other; in this region most of the thermal conductivity models for two-phase systems are applicable. At higher particle content, the filler tends to form ag-glomerates and conductive chains resulting in a rapid increase in thermal conductivity. The model developed by Agari and Uno estimates the thermal conductivity in this region. Tensile strength and elongation at break decreased with increasing aluminum particles content, which is attributed to the introduction of discontinuities in the structure. Modulus of elasticity increased up to around 12% volume content of aluminum particles. Einstein's equation, which assumes perfect adhesion between the filler particles and the matrix, explains the experimental results in this region quite well. For particle content higher than 30%, a decrease in the modulus of elasticity is observed which may be attributed to the formation of cavities around filler particles during stretching in tensile tests. © 1996 John Wiley & Sons, Inc. 相似文献
12.
《Carbon》2014
Epoxy composites filled with both graphene oxide (GO) and diglycidyl ether of bisphenol-A functionalized GO (DGEBA–f–GO) sheets were prepared at different filler loading levels. The correlations between surface modification, morphology, dispersion/exfoliation and interfacial interaction of sheets and the corresponding mechanical and thermal properties of the composites were systematically investigated. The surface functionalization of DGEBA layer was found to effectively improve the compatibility and dispersion of GO sheets in epoxy matrix. The tensile test indicated that the DGEBA–f–GO/epoxy composites showed higher tensile modulus and strength than either the neat epoxy or the GO/epoxy composites. For epoxy composite with 0.25 wt% DGEBA–f–GO, the tensile modulus and strength increased from 3.15 ± 0.11 to 3.56 ± 0.08 GPa (∼13%) and 52.98 ± 5.82 to 92.94 ± 5.03 MPa (∼75%), respectively, compared to the neat epoxy resin. Furthermore, enhanced quasi-static fracture toughness (KIC) was measured in case of the surface functionalization. The GO and DGEBA–f–GO at 0.25 wt% loading produced ∼26% and ∼41% improvements in KIC values of epoxy composites, respectively. Fracture surface analysis revealed improved interfacial interaction between DGEBA–f–GO and matrix. Moreover, increased glass transition temperature and thermal stability of the DGEBA–f–GO/epoxy composites were also observed in the dynamic mechanical properties and thermo-gravimetric analysis compared to those of the GO/epoxy composites. 相似文献
13.
《Ceramics International》2017,43(18):16436-16442
A novel direct coagulation casting via controlled release of high valence counter ions (DCC-HVCI) method was applied to prepare the alumina fiber-reinforced silica matrix composites with improved mechanical properties. In this method, the silica suspension could be rapidly coagulated via controlled release of calcium ions from calcium iodate and pH shift by hydrolysis of glycerol diacetate (GDA) at an elevated temperature. The influence of tetramethylammonium hydroxide (TMAOH) dispersant amount, volume fraction and calcium iodate concentration on the rheological properties of suspensions was investigated. Additionally, the effect of alumina fiber contents on the mechanical properties of alumina fiber-reinforced silica matrix composites was studied systematically. It was found that the stable suspension of 50 vol% solid loading could be prepared by adding 2.5 wt% TMAOH at room temperature. The addition of 0–15 wt% alumina fibers had no obvious effect on the viscosity of the silica suspension. The controlled coagulation of the suspension could be achieved by adding 6.5 g L−1 calcium iodate and 1.0 wt% GDA after treating at 70 °C for 30 min. Compressive strength of green bodies with homogeneous microstructure was in the range of 2.1–3.1 MPa. Due to the fiber pull-out and fracture behaviors, the mechanical properties of alumina fiber-reinforced composites improved remarkably. The flexural strength of the composite with 10 wt% alumina fibers sintered at 1350 °C was about 7 times of that without fibers. The results indicate that this approach could provide a promising route to prepare complex-shaped fiber-reinforced ceramic matrix composites with uniform microstructure and high mechanical properties. 相似文献
14.
15.
In this paper, a new composite material, AEG, which was developed in our laboratory by catalytic grafting polymerization of ethylene on asbestos fibers, was used to improve the properties of asbestos/HDPE composites. Tensile testing shows that the AEG modified asbestos/HDPE composites exhibit significantly higher tensile strength and elongation at break than the unmodified ones. Instrumented impact testing permits a detailed understanding of the modifying effect of AEG on impact properties. The records acquired during impact for the unmodified composites were truncated at the onset of initial fracture, showing a typical brittle cleavage fracture. In contrast, the records for the AEG modified composites showed an effective post-initial fracture behavior. The load at peak, the energy required to initiate and propagate the fracture, and the deformation during impact increase dramatically for the AEG modified composites. SEM micrographs of the fractured surfaces also demonstrate the difference in the morphology of the two composites. 相似文献
16.
碳纤维增强SiC陶瓷复合材料的研究进展 总被引:7,自引:0,他引:7
碳纤维增强SiC陶瓷基复合材料具有良好的高温力学性能,是航空航天和能源等领域新的高温结构材料研究的热点之一.本文回顾了增强体碳纤维的发展,对材料的成型制备工艺,材料的抗氧化涂层研究进展和现有的一些应用做了综述,并展望了碳纤维增强SiC陶瓷基复合材料以后的研究重点及发展前景. 相似文献
17.
《Journal of the European Ceramic Society》2020,40(4):1549-1556
Long-term thermal aging is a typical factor affecting the thermo-mechanical fatigue life for hot-end components in the gas turbine. The present work focuses on the development of thermal aging-induced damage in 2-D woven oxide/oxide ceramic matrix composites from micro-mechanism and macroscopic mechanical performance. The porosity evolution and mechanical performance after long-term thermal aging were characterized through mercury intrusion measurements and uniaxial compressive tests, respectively. The results show that the decrease of micro-porosity directly reflects the irreversible evolution of material microstructure in the thermal aging process, and the decrease of compressive strength after aging is the macroscopic reflection of the microstructure variation. The porosity increment of matrix was thus used to characterize the thermal aging-induced damage, establishing a unique analysis model between the increment of micro-porosity under thermal aging and the corresponding degradation of material compressive strength. The experimental results are in good agreement with the established model. 相似文献
18.
《Ceramics International》2020,46(15):23379-23389
Ceramic matrix composites exhibit optimal high temperature property and complex nonlinear behaviors including irreversible deformations and stiffness degradation under different mechanical loading conditions. In the present work, the damage evolution of the material under multi-axial loads considering effects of loading-unloading cyclic was studied and a novel continuum damage constitutive model was proposed. The material degradation was decomposed into monotonic damages and cyclic damages. The anisotropic hardening behavior of the material was considered by taking orientation dependence into account. Compared to the experimental results, the constitutive model could accurately predict the stress-strain response and stiffness degradations of the oxide/oxide ceramic matrix composites for monotonic loading and cyclic loading. 相似文献
19.
Alessandro Scola Nicolas Eberling-Fux Sylvain Turenne Edu Ruiz 《Journal of the American Ceramic Society》2019,102(6):3256-3268
In this work, a novel process named Flexible Injection Process (FIP) was developed to manufacture near-net shape oxide/oxide composites reinforced with 3D interlock fibers. This process uses a flexible membrane to apply pressure to promote transverse impregnation of the fibrous reinforcement by a slurry charged with sub-micron ceramic particles. Due to the through-thickness filtration and compaction, FIP process is much faster than typical in-plane impregnation and results in composites with lower residual porosity than those produced by traditional processes. In this study, a mathematical modeling of the impregnation in FIP was developed and compared to experimental infiltration experiments. Furthermore, ceramic matrix composites (CMCs) produced by FIP were compared to composites manufactured via an established RTM-like process. The two molding processes were compared to determine if the different flow behaviors have an impact on material densification, porosity formation, mechanical properties, and manufacturing time. CMCs produced by both methods resulted in similar microstructures, as determined by mercury intrusion porosimetry, even if FIP composites were marginally less porous. Finally, a comparison of mechanical properties resulting from the two manufacturing methods has shown a similar behavior. Thus, the main advantages of FIP molding were identified to be the shorter cycle time and the robustness of the impregnation compared to RTM-like processes. 相似文献
20.
Dynamic mechanical properties of some epoxy matrix composites have been studied, comparing experimental data with theoretical models. The matrix in all composite samples was Shell Epon 828, a diglycidyl ether of bisphenol A, cured with meta-phenylenediamine. Fibrous composite samples were made with glass and graphite fibers. Particulate composite samples were made with glass microspheres, atomized aluminum, powdered silica, alumina, asbestos, mica, carbon black, and graphite. The dynamic elastic modulus and damping of these samples were measured at temperatures between 85° and 345°K by a free-free flexural resonance technique. The dynamic modulus of parallel fiber composites follows the linear rule of mixtures for low fiber volume fractions; deviations from linearity at higher volume fractions appear to be due to defects caused by the sample fabrication technique. Dynamic moduli of the particulate composites conform, within experimental error, to the static modulus theory of Wu up to filler volume fractions of 0.35 to 0.40. Deviations from Wu's theory at higher volume fractions may be due to agglomeration of filler particles. The damping of particulate composites with quasi-spherical filler particles appears to follow the rule of mixtures. In particulate composites with needle- and flake-type fillers, and in fibrous composites, the fillers are more highly stressed; with more of the strain energy in the low-damping fillers, overall damping is reduced. Damping greater than that attributable to the matrix and filler may be due to slippage at the interface between them. In addition to supporting Wu's theory of the elastic modulus of a particulate composite, this study demonstrates the utility of the nondestructive free-free flexural resonance techniques for obtaining a large body of reliable data in a short time from relatively few small samples. This greatly facilitates the experimental testing of theoretical models and the evaluation of fillers, matrix materials, and fabrication techniques. 相似文献