首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, poly(ε-caprolactone) (PCL)/sodium chloride (NaCl), PCL/poly(ethylene oxide) (PEO)/NaCl and PCL/PEO/NaCl/hydroxyapatite (HA) composites were injection molded and characterized. The water soluble and sacrificial polymer, PEO, and NaCl particulates in the composites were leached by deionized water to produce porous and interconnected microstructures. The effect of leaching time on porosity, and residual contents of NaCl and NaCl/HA, as well as the effect of HA addition on mechanical properties was investigated. In addition, the biocompatibility was observed via seeding human mesenchymal stem cells (hMSCs) on PCL and PCL/HA scaffolds.The results showed that the leaching time depends on the spatial distribution of sacrificial PEO phase and NaCl particulates. The addition of HA has significantly improved the elastic (E′) and loss moduli (E″) of PCL/HA scaffolds. Human MSCs were observed to have attached and proliferated on both PCL and PCL/HA scaffolds. Taken together, the molded PCL and PCL/HA scaffolds could be good candidates as tissue engineering scaffolds. Additionally, injection molding would be a potential and high throughput technology to fabricate tissue scaffolds.  相似文献   

2.
Polycaprolactone/hydroxyapatite (PCL/HA) composites were prepared by two different procedures. The first one consists of a conventional blending of the polymer and the reinforcement material in an extruder. The second method consists of grafting of PCL on the surface of HA particles. This was achieved by a ring opening polymerization of caprolactone in the presence of HA, where its OH groups act as initiators. By this method, it was possible to obtain, in one step, a composite of PCL and surface modified HA. In both methods different percentages of filler were used to obtain several composites. These composites were characterized with respect to their mechanical properties, in the dry and wet state, by means of tensile tests on compression molded samples. The polymer/filler interface was analyzed by scanning electron microscopy. Water uptake and weight loss degradation experiments were also performed. An increase in the modulus for higher amounts of filler was, as expected, observed in the composites obtained by both processes. Furthermore, the mechanical properties of the materials in the wet state are considerably lower than those in the dry state. However, this difference is more significant for the composites obtained by conventional blending than for composites obtained by the grafting procedure, indicating that the later procedure can be an adequate route to reduce water susceptibility of PCL/HA composites.  相似文献   

3.
Hydroxyapatite (HA)/poly(ε-caprolactone) (PCL) composite scaffolds were fabricated using a combination of the extrusion and bi-axial lamination processes. Firstly, HA/PCL composites with various HA contents (0, 50, 60, 70 wt%) were prepared by mixing the HA powders and the molten PCL at 100 °C and then extruded through an orifice with dimensions of 600 × 600 μm to produce HA/PCL composite fibers. Isobutyl methacrylate (IBMA) polymer fiber was also prepared in a similar manner for use as a fugitive material. The 3-D scaffold was then produced by the bi-axial lamination of the HA/PCL and IBMA fibers, followed by solvent leaching to remove the IBMA. It was observed that the HA/PCL composites had a superior elastic modulus and biological properties, as compared to the pure PCL. The fabricated HA/PCL scaffold showed a controlled pore structure (porosity of ∼49% and pore size of ∼512 μm) and excellent welding between the HA/PCL fibers, as well as a high compressive strength of ∼7.8 MPa.  相似文献   

4.
Development of fibrous scaffold of hydroxyapatite/biopolymer nanocomposite offers great potential in the field of bone regeneration and tissue engineering. Hydroxyapatite (HA)/poly (ε-caprolactone) (PCL) fibrous scaffolds were successfully prepared by electrospinning dopes containing HA and PCL in this work. It was found that pre-treating HA with γ-glycioxypropyltrimethoxysilane (A-187) was effective in improving HA dispersion both in solutions and in a PCL matrix. Mechanical properties of the scaffolds were greatly enhanced by the filling of A187-HA. The bioactivity of PCL was remarkably improved by the addition of HA and A187-HA. Fibroblasts and osteoblasts were seeded on scaffolds to evaluate the effect of A-187 on biocompatibility of HA/PCL composites. Based on this study, good dispersion of HA in PCL matrix was granted by pretreatment of HA with A-187 and A187-HA/PCL fibrous scaffolds were obtained by electrospinning. These results demonstrated that the scaffolds may possess improved mechanical performance and good bioactivity due to A187-HA incorporation.  相似文献   

5.
Hydroxyapatite (HA)/polycaprolactone (PCL)–chitosan (CS) composites were prepared by melt-blending. For the composites, the amount of HA was varied from 0% to 30% by weight. The morphology, structure and component of the composites were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The tensile properties were evaluated by tensile test. The bioactivity and degradation property were investigated after immersing in simulated body fluid (SBF) and physiological saline, respectively. The results show that the addition of HA to PCL–CS matrix tends to suppress the crystallization of PCL but improves the hydrophilicity. Adding HA to the composites decreases the tensile strength and elongation at break but increases the tensile modulus. After immersing in SBF for 14 days, the surface of HA/PCL–CS composites are covered by a coating of carbonated hydroxyapatite with low crystallinity, indicating the excellent bioactivity of the composites. Soaking in the physiological saline for 28 days, the molecular weight of PCL decreases while the mass loss of the composites and pH of physiological saline increase to 5.86% and 9.54, respectively, implying a good degradation property of the composites.  相似文献   

6.
A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n~80,000) or low (M n~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone. This overall enhancement was found to be attributed to the densification of low molecular weight PCL and the reinforcement of high molecular PCL concurrently. The combined low and high molecular weight infiltration in sequence also maintained high osteoblast proliferation and differentiation of the composites at the similar level of the HA. Densification was a dominant mechanism for the change in modulus with porosity and density of the infiltrated HA/PCL composites. However, both densification and the reinforcing performance of the infiltration phase were crucial for strength and toughening enhancement of the composites possibly by the defect healing and stress shielding mechanisms. The sequence of using low molecular weight infiltration and followed by high molecular infiltration was seen to provide the greatest flexural properties and highest cells proliferation and differentiation capabilities.  相似文献   

7.
In the current study PCL/HA composites were fabricated using SLS as two- and three-dimensional lattice structures and exposed to a cellular component (MC 3T3 osteoblast-like cells). The main aims were to determine the mechanical differences due to powder composition and to observe the physical and mechanical changes pertaining to cell presence. These structures were characterized by compressive mechanical testing, and the effects of cell culturing and degradation on mechanical properties of the scaffolds with different PCL/HA compositions were determined. Moreover, changes in the scaffold morphology due to the cell culture conditions were determined by μ-CT analysis.Cells steadily grew on the scaffolds for 21 days with preferential distribution around the macropores and initially PCL/HA(15%) composites had higher cell numbers. Removal of loosely sintered parts was observable during the culturing period. Cell culture conditions did not change the compressive moduli significantly but had a distinct effect on compressive strength. For PCL/HA(15%) composites, an initial loss in strength caused by cell culture was reversed by longer cell exposure, with compressive strength of the structures restored to the initial properties (p  0.05). μ-CT measurements showed widespread morphological changes in the scaffolds, such as a decrease in the roughness of the struts. In general, in the initial period composites with lower HA content (15 wt.%) showed better metabolic activity compared to the higher HA content, however by day 14 the performance of the two compositions was equal. These results suggest that changes in sintering due to the differences in powder composition can have profound effects on the short and long term mechanical properties of the scaffold particularly under cell culture conditions, and this should be closely considered for SLS processing of scaffolds.  相似文献   

8.
Hydroxyapatite (Ca10(PO4)6(OH)2)—biodegradable polymer composites as bone replacement scaffolds were synthesized by a colloidal non-aqueous precipitation technique at room temperature. The starting materials used for synthesizing hydroxyapatite (HA) were Ca(NO3)2·4H2O and H3PO4 with a Ca/P ratio of 1.67 while poly(ε-caprolactone) (PCL) was used as the biodegradable polymer. The composites were prepared containing up to 34.5 wt.% HA and PCL polymer without any evidence of phase separation. This paper describes, the synthesis and structure of the HA/PCL composites. In addition, the pH changes during precipitation, the yield of the chemical reaction, and the possible existence of any bond between the ceramic and the polymer including the microstructure of the composites were studied. Finally, the mechanical and thermal properties of the composites were investigated. The results of these studies are described and discussed.  相似文献   

9.
Currently, the bone-repair biomaterials market is dominated by high modulus metals and their alloys. The problem of stress-shielding, which results from elastic modulus mismatch between these metallic materials and natural bone, has stimulated increasing research into the development of polymer-ceramic composite materials that can more closely match the modulus of bone. In this study, we prepared poly(l-lactic acid)/hydroxyapatite/poly(ε-caprolactone) (PLLA/HA/PCL) composites via a four-step process, which includes surface etching of the fiber, the deposition of the HA coating onto the PLLA fibers through immersion in simulated body fluid (SBF), PCL coating through a dip-coating process, and hot compression molding. The initial HA-coated PLLA fiber had a homogeneous and continuous coating with a gradient structure. The effects of HA: PCL ratio and molding temperature on flexural mechanical properties were studied and both were shown to be important to mechanical properties. Mechanical results showed that at low molding temperatures and up to an HA: PCL volume ratio of 1, the flexural strain decreased while the flexural modulus and strength increased. At higher mold temperatures with a lower viscosity of the PCL a HA: PCL ratio of 1.6 gave similar properties. The process successfully produced composites with flexural moduli near the lower range of bone. Such composites may have clinical use for load bearing bone fixation.  相似文献   

10.
New composites of hydroxyapatite and bioresorbable macromolecular material   总被引:1,自引:0,他引:1  
Composite materials were prepared by mixing in different proportions of hydroxyapatite (HA) and poly(-caprolactone-oxyethylene--caprolactone) block copolymer (PCL-POE-PCL) to produce a new resorbable material for biomedical applications. This material has proved to be very interesting for production of periodontal membranes. Mechanical properties are linearly proportional to the amount of HA introduced. Fourier transform infrared (FTIR) investigations have pointed out that HA is able to influence some close -caprolactone molecules to start its homopolymerization giving PCL with an end chain ionic bonding. HA grains are therefore surrounded by a film of PCL which grants close connection of HA grains within copolymeric matrix. This interface bond with PCL is, however, an interesting occurrence for preparations of HA/PCL composites. ©1999 Kluwer Academic Publishers  相似文献   

11.
Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in situ sol–gel process using calcium hydroxide and phosphoric acid precursors in the presence of Tetrahydrofuran (THF) as a solvent. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) analyses. The results indicated that pure HA nanoparticles were well-incorporated and homogenously dispersed in the PCL matrix. It was found that the mechanical property of PCL was improved by addition of 20 wt.% HA nanoparticles. Furthermore, the biological property of nanocomposites was investigated under in vitro condition. For this purpose, HA/PCL scaffolds were prepared through a salt leaching process and immersed in a saturated simulated body fluid (SBF) after 3 and 7 days. It was found that a uniform layer of biomimetic HA could be deposited on the surface of HA/PCL scaffolds. Therefore, the prepared HA/PCL scaffolds showed good potential for bone tissue engineering and could be used for many clinical applications in orthopedic and maxillofacial surgery.  相似文献   

12.
Polycaprolactone (PCL), poly (lactic acid) (PLA) and hydroxyapatite (HA) are frequently used as materials for tissue engineering. In this study, PCL/PLA/HA nanofiber mats with different weight ratio were prepared using electrospinning. Their structure and morphology were studied by FTIR and FESEM. FTIR results demonstrated that the HA particles were successfully incorporated into the PCL/PLA nanofibers. The FESEM images showed that the surface of fibers became coarser with the introduction of HA nanoparticles into PCL/PLA system. Furthermore, the addition of HA led to the decreasing of fiber diameter. The average diameters of PCL/PLA/HA nanofiber were in the range of 300-600 nm, while that of PCL/PLA was 776 +/- 15.4 nm. The effect of nanofiber composition on the osteoblast-like MC3T3-E1 cell adhesion and proliferation were investigated as the preliminary biological evaluation of the scaffold. The MC3T3-E1 cell could be attached actively on all the scaffolds. The MTT assay revealed that PCL/PLA/HA scaffold shows significantly higher cell proliferation than PCL/PLA scaffolds. After 15 days of culture, mineral particles on the surface of the cells was appeared on PCL/PLA/HA nanofibers while normal cell spreading morphology on PCL/PLA nanofibers. These results manifested that electrospun PCL/PLA/HA scaffolds could enhance bone regeneration, showing their marvelous prospect as scaffolds for bone tissue engineering.  相似文献   

13.
A combination of bi-axial machining and lamination was used to fabricate macrochanneled poly (ɛ-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds. Thermoplastic PCL/HA sheets with a thickness of 1 mm, consisting of a 40 wt% PCL polymer and 60 wt% HA particles, were bi-axially machined. The thermoplastic PCL/HA exhibited an excellent surface finish with negligible tearing of the PCL polymer and pull-out of the HA particles. The bi-axially machined sheets were laminated with a solvent to give permanent bonding between the lamina. This novel process produced three-directionally connected macrochannels in the dense PCL/HA body. The macrochanneled PCL/HA scaffold exhibited excellent ductility and reasonably high strength. In addition, good cellular responses were observed due to the osteoconductive HA particles.  相似文献   

14.
We synthesized poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres with an aligned porous structure and evaluated their potential applications in bone tissue engineering. A range of HA particles (0, 5, 10 and 20 wt.% in relation to the PCL polymer) were added to a PCL solution in order to improve the biocompatibility of the porous PCL/HA composite microspheres. All the synthesized microspheres showed that the HA particles were distributed well in the PCL matrix, while preserving their aligned porous structure. The average size of the PCL/HA composite microspheres increased from 62 ± 7 to 179 ± 95 μm with increasing HA content from 0 to 20 wt.%. The incorporation of the HA particles to the PCL polymer led to a considerable improvement in in vitro bioactivity, which was assessed by immersing the PCL/HA composite microspheres in simulated body fluid (SBF). A number of apatite crystals could be precipitated on the surface of the aligned porous PCL/HA composite microspheres after soaking in the SBF for 7 days.  相似文献   

15.
The thermal-treated hydroxyapatite (HA) particles, Mg and Zn powders were used to prepare the HA/Mg-Zn composites with different HA contents by means of powder metallurgy technology. The microstructures, formation phases, and corrosion behaviors in simulated body fluid (SBF) were studied in comparison with pure magnesium and HA/Mg composites fabricated by the same preparation technology. As a result, no evident reaction happened between HA particles and Mg matrix during sintering process, and Zn atoms diffused into Mg matrix to form a single phase Mg-Zn alloy matrix. The addition of HA particles changed the corrosion mechanism of Mg matrix. During the corrosion process, HA particles would adsorb PO43− and Ca2+ ions efficiently and induce the deposition of Ca-P compounds on the surface of composites. HA could improve the corrosion resistance of magnesium matrix composites in SBF and restrain the increase of pH of SBF. Furthermore, the addition of Zn was favorable to improve the corrosion resistance of HA/Mg composites due to the densification of composites and the formation of Mg-Zn alloy matrix.  相似文献   

16.
Novel composite films of Bombyx mori silk fibroin (SF) and hydroxyapatite (HA) composite films, with glycerin as an additive, were fabricated by means of co-precipitation, where the theoretical HA content was varied from 2 (w/w)% to 31 (w/w)%. The structure and properties of the composite films were investigated by SEM, XRD, AFM, TGA and tensile testing. The results showed that the composite films were smooth and transparent with the uniform distribution of HA into the composites when the final HA content was lower than 21 (w/w)%. XRD and TGA data showed that the silk fibroin in the composites was predominantly in a β-sheet crystalline structure, which was induced not only by the addition of glycerin, also by the HA crystal growth during the composite fabrication, leading to the thermal stable composite films. On the other hand, the HA crystals had the anisotropic growth with high extent of lattice imperfection and the preferential orientation along c-axis, probably promoted by the silk fibroin. The mechanical testing results showed that both break strain and stress were declined with the increase of HA content in the composites, presumably due to the original brittleness of HA compound.  相似文献   

17.
采用选择性激光烧结技术构建多孔聚己内酯(PCL)骨支架,用原位合成的方法制得壳聚糖/羟基磷灰石(CS/HA)悬浮液,并采用真空浸泡、低速离心和冷冻凝胶的方法使CS/HA黏附在PCL支架的表面,以改善骨支架的生物相容性和细胞增殖活性。通过X射线衍射(XRD)和扫描电子显微镜(SEM)观测复合支架的物相和形貌,测量支架的压缩强度和杨氏模量,测量支架表面的水接触角,并通过体外细胞实验研究复合支架的生物学性能。实验结果表明,原位合成的方法制得了羟基磷灰石(HA);CS/HA凝胶与PCL骨支架表面黏附良好;CS/HA改善了PCL支架表面的亲水性,提升了骨支架的生物相容性和细胞增殖活性。  相似文献   

18.
The aim of this study was to compare physico-chemical and biological properties of hydroxyapatite (HA) and hardystonite (HS) based composite scaffolds. Hardystonite (Ca2ZnSi2O7) powders were synthesized by a sol–gel method while polycaprolactone–hardystonite (PCL–HS) and polycaprolactone–hydroxyapatite (PCL–HA) were fabricated in nanofibrous form by electrospinning. The physico-chemical and biological properties such as tensile strength, cell proliferation, cell infiltration and alkaline phosphatase activity were determined on both kinds of scaffolds. We found that PCL–HS scaffolds had better mechanical strength compared to PCL–HA scaffolds. Addition of HA and HS particles to PCL did not show any inhibitory effect on blood biocompatibility of scaffolds when assessed by hemolysis assay. The in vitro cellular behavior was evaluated by growing murine adipose-tissue-derived stem cells (mE-ASCs) over the scaffolds. Enhanced cell proliferation and improved cellular infiltrations on PCL–HS scaffolds were observed when compared to HA containing scaffolds. PCL–HS scaffolds exhibited a significant increase in alkaline phosphatase (ALP) activity and better mineralization of the matrix in comparison to PCL–HA scaffolds. These results clearly demonstrate the stimulatory role of Zn and Si present in HS based composite scaffolds, suggesting their potential application for bone tissue engineering.  相似文献   

19.
In the present study, the synthesis of a semi-Interpenetrating Polymer Network (semi-IPN) incorporating linear poly-(ɛ-caprolactone) (PCL) into cross-linked poly-(2-hydroxyethylmethacrilate) (PHEMA) reinforced with hydroxyapatite (HA) has been described. The aim of this study was to improve the mechanical and biological performance of the PHEMA/PCL in the hydrated state, for orthopaedic applications. The swelling behaviour, mechanical (compressive and tensile) and surface chemical-physical (morphology, stoichiometric composition) characterisation of the novel HA reinforced composite based on PHEMA/PCL polymer matrix, PHEMA/PCL 70/30 (w/w) + 50% (w/w) HA (PHEMA/PCL/HA), were evaluated. Furthermore, a preliminary in vitro biological evaluation was also performed on the composite using a fully characterised primary human osteoblast-like (HOB) cell model. The inclusion of HA in the composite improved the mechanical performance in the swollen state, with values of elastic modulus in a similar range to that of trabecular bone. The composite surfaces showed a porous, irregular topography with the presence of: oxygen (O), carbon (C); phosphorous (P); calcium (Ca) where the Ca/P ratio was 1.78. Biological evaluation indicated undetectable weight loss of the sample, no release of toxic leachables from the composite and pH values within an acceptable range for cell growth. The results indicate that the novel PHEMA/PCL/HA composite is a promising candidate as filler or substitute for spongy bone for orthopaedic applications.  相似文献   

20.
Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10–30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10–40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号