首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
本文初步研究了一种新型中温固体氧化物燃料电池的性能,包括工作温度、功率输出特性以及电池的稳定性等,试验结果表明,制备的PEN单电池可以在500-600℃的温度下工作,开路电压(OCV)达0.8-1.0V,电池输出功率密度可达01W/cm^2。升高温度可以提高电池性能,同时又降低了电池的稳定性,较合适的工作温度为550℃左右。  相似文献   

2.
以不同含量的Na2SO4掺杂YSZ(Y2O3稳定的ZrO2,Y2O3的摩尔分数为8%)为复合电解质,Co3O4为阳极催化剂,La0.7Sr0.3MnO3为阴极催化剂,组装固体氧化物燃料电池,以二氧化硫气体为燃料气,测试复合电解质材料电池的电化学性能.结果表明:以质量分数为25%的Na2SO4+YSZ为复合电解质的电池在700℃时,获得最大开路电压372mV,功率密度7.87mW·cm-2.以不同含量的Na2SO4掺杂YSZ作为复合电解质时,电池的电流密度和功率密度的高低顺序均为:质量分数25%的Na2SO4+YSZ>质量分数16%的Na2SO4+YSZ>质量分数8%的Na2SO4+YSZ>质量分数50%的Na2SO4+YSZ>YSZ.  相似文献   

3.
该文针对阳极支撑中温固体氧化物燃料电池建立了三维数学模型,以氢气作为燃料、空气为氧化剂,模拟了单电池内的组分扩散、气体流动、热量扩散、电荷运输等主要物理化学过程。将自己制备的电池各组元材料性能代入模型中进行了计算。计算出阴阳极催化层与扩散层交界面的O2、H2和H2O浓度的分布;扩散层中间和气体通道的燃料气与氧化剂气体速度矢量分布;各流场的压力分布及电极催化层的电流密度分布等电池特性。为阳极支撑中温固体氧化物燃料电池的设计和优化提供了充分合理的参考依据。  相似文献   

4.
采用EDTA-柠檬酸盐改进的溶胶凝胶法成功制备出用于中温固体氧化物燃料电池(IT-SOFCs)的阴极材料GdBa_(0.7)Sr_(0.3)Co_2O_(5+δ)(GBSCO)和电解质材料Ce_(0.9)Gd_(0.1)O_(1.95)(GDC),使用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征了材料的晶体结构和微观结构特性。采用电化学交流阻抗谱(EIS)和线性扫描伏安法(LSV),对组装的对称半电池三电极体系的电化学性能进行了表征。实验结果表明:随着测试温度的升高,两种不同结构半电池的电化学性能均有明显提升。当测试温度为750℃时,半电池GBSCO//GDC的面积比界面电阻为0.166Ω·cm~2,极化电流密度为0.370 A·cm~(-2);相同温度下,半电池GBSCO//多孔GDC骨架/GDC的面积比界面电阻为0.118Ω·cm~2,极化电流密度为0.763 A·cm~(-2);后者的面积比界面电阻要比前者低0.048Ω·cm~2,而极化电流密度要比前者高0.393 A·cm~(-2)。体现了GBSCO//多孔GDC骨架/GDC结构的优异性。  相似文献   

5.
中温固体氧化物燃料电池(SOFCs)的工作温度应低于800℃。本文重点对ZrO2基、CeO2基、Bi2O3基和ABO3型电解质材料的最新进展和发展趋势作了综述。以8%氧化钇稳定氧化锆(8YSZ)作为电解质的SOFCs,工作温度在1000℃左右。经较低价的碱土和稀土离子(Sr2+,Ca2+,Sc3+和Y3+)掺杂稳定ZrO2,在800℃,氧化钪掺杂氧化锆(Zr0.9Sc0.1O1.95,scandia doped zirconia,SSZ)的电导率(0.1S/cm)比Zr0.9Y0.1O1.95(10YSZ)的(0.03S/cm)高得多。薄膜化是改进氧化锆基电解质的电导性能的另一个途径。厚度小于10μm的YSZ基SOFCs,在800℃时功率密度最大可达2W/cm2。研究新的稳定的双掺杂电解质材料将会是CeO2基材料研究的重点。Y2O3和Sm2O3共掺杂(Y0.1Sm0.1Ce0.8O1.9,YSCO)在800℃时电导率可达到0.0549S/cm,电导活化能为0.77eV。Sr和Mg共掺杂LaGaO3(LSGM)阳离子导体已成为中低温SOFCs的重要候选电解质材料。钙钛矿型氧化物是除了Bi2O3以外氧离子电导率最高的陶瓷材料。寻求新的、优良的中温SOFCs电解质材料仍是目前推动中温SOFCs实用化的关键因素之一,薄膜化技术是研究的另一个重点。  相似文献   

6.
通过向电解质(GDC)中掺杂不同质量分数(10%、20%、30%)的碳酸盐(Li_2CO_3 53mol%、SrCO_3 47mol%),得到复合电解质.通过电导率测试、扫描电镜(SEM)测试对此复合电解质进行电化学性能表征.将此复合电解质与NiO复合得到阳极粉体,将此复合电解质和Li处理过的NiO复合,得到阴极粉体.将制备的阳极、阴极、电解质用干压法压制,得到阳极支撑的单电池片.对单电池的电化学性能进行表征.实验结果表明,含碳酸盐质量分数为20%的GDC作为电解质制备的单电池功率密度最高,在650℃温度下,为100 mW·cm~(-2).  相似文献   

7.
通过向电解质(GDC)中掺杂不同质量分数(10%、20%、30%)的碳酸盐(Li_2CO_3 53 mol%与NaCO_3 47 mol%)得到复合电解质.通过电导率测试、扫描电镜(SEM)测试对此复合电解质进行电化学性能表征.合电解质与NiO复合得到阳极粉体,复合电解质和Li处理过的NiO复合,得到阴极粉体.将以上制备的阳极、阴极、电解质用干压法压制,得到阳极支撑的单电池片.测试单电池的电化学性能.结果表明,含碳酸盐质量分数为30%的GDC作为电解质制备的单电池,其功率密度最高,在600℃温度下为1 400 mW/cm~2.  相似文献   

8.
通过固相反应法制备了钙钛矿氧化物Ba0.6Sr0.4Co0.9Nb0.1O3-δ(简称BSCN0.6),采用XRD对BSCN0.6与Gd0.1Ce0.9O1.95(简称GDC)电解质间的高温化学相容性进行表征。结果表明,BSCN0.6与GDC高温煅烧后存在微弱的固溶反应,但并未对阴极性能造成不利影响。将BSCN0.6与质量分数为30%的GDC复合(简称BSCN0.6-30%GDC)后作SOFC阴极,采用四电极法测电导、热膨胀测试等手段对复合阴极进行表征。结果表明,BSCN0.6与GDC复合降低了材料的电导率,同时也降低了材料的热膨胀系数,提高了阴极与GDC电解质间的热匹配性。以BSCN0.6-30%GDC复合材料作电极,700~800℃时对称电池BSCN0.6-30%GDC//GDC的极化阻抗为0.047~0.012Ω·cm2。因此,BSCN0.6-30%GDC复合材料有望作IT-SOFC的低极化阻抗的阴极材料。  相似文献   

9.
采用固相反应法合成了中温固体氧化物燃料电池(IT-SOFCs)阴极材料Ba0.6Sr0.4Co0.9Nb0.1O3-δ(BSCN)。利用XRD对该材料的结构进行了表征。研究表明,室温下阴极材料BSCN成立方相结构(Pm-3m);将该阴极材料与电解质Ce0.9Gd0.1O1.95(GDC)混合,并在1 000℃煅烧10h后,它们之间无化学反应发生。在SOFCs的操作温度(600~800℃)下,BSCN阴极的电导率可达21~27S/cm。热膨胀测试表明,BSCN的热膨胀系数为17.0×10-6/K,明显低于SrCo0.9Nb0.1O3-δ(SCN)的热膨胀系数,这有利于提高阴极与电解质GDC间的热匹配性。以BSCN作电极,GDC作电解质,制备对称电池BSCN/GDC/BSCN,研究电极与电解质间的极化阻抗。750℃时,极化阻抗仅为0.026Ω.cm2。以BSCN作阴极,NiO-SDC(NiO-Ce0.8Sm0.2O1.9)作阳极,300μm厚的GDC作电解质,制备单电池BSCN/GDC/NiO-SDC。800℃时,单电池的最大功率密度可达782mW/cm2。以上结果表明,BSCN有望成为中温固体氧化物燃料电池阴极的候选材料。  相似文献   

10.
海洋沉积物微生物燃料电池(MSMFCs)在海底产电并长期驱动传感器运行过程中,悬浮于水体中阴极易被海底沉积物掩埋从而影响产电性能,导致电池失效。在实验室中模拟沉积物分别掩埋1/3,1/2和2/3电池阴极,探究阴极电化学性能和电池产电规律。结果表明:随着阴极被沉积物掩埋程度增加,开路电位逐渐降低,而需要稳定的时间增加;阴极电容逐渐减小,最小电容降至32 F/cm~2,是未掩埋对照组的0.72倍;动力学活性先降后升,最大活性为对照组的1.61倍(2/3组)。掩埋过程中,MSMFCs产电性能未受影响,最大功率密度达140.83 mW/m~2(1/3组),是对照组的1.21倍。可见,随着阴极被海底沉积物掩埋程度的增加,尽管阴极电化学性能下降、电池产电性能出现波动,但MSMFCs仍可正常工作。  相似文献   

11.
采用尿素-硝酸盐燃烧法对磷灰石型LSO电解质进行了三价稀土元素Nd和二价碱土元素Sr的La位掺杂,对合成样品进行XRD、SEM分析表征,并测试和分析了样品的电导率.结果表明:Sr、Nd掺杂对LSO的晶体结构、物相和形貌产生的影响很小,而适量的掺杂可有效提高LSO的氧离子传输性能.当掺杂x=0.3时,La9.33Mx(SiO4)6O2+δ(M=Sr、Nd)具有最高离子电导率,La9.33M0.3(SiO4)6O2+δ在500℃时的电导率分别为7.248×10-3S.cm-1、1.782×10-2S.cm-1.Nd掺杂不仅可以提高电导率,还可以降低传导活化能,相比于Sr掺杂更有利于LSO在中低温SOFCs中的应用.实验认为,Sr、Nd掺杂的LSO属于间隙氧传导机制,掺杂可以提高间隙氧的数量,间隙氧相比阳离子空位对LSO电导率的影响更大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号