共查询到19条相似文献,搜索用时 78 毫秒
1.
在分析量子进化基本概念的基础上,提出了一种新的求解TSP的混合量子进化算法(MQEA)。该算法将三段优化局部搜索算法融入量子进化机制,采用一种基于边的编码方法,应用最近邻规则设置初始参数,并设计了排序交叉算子以扩展种群的搜索范围。通过选取国际通用旅行商问题(TSP)实例库(TSPLIB)中的多个实例进行测试,表明新算法具有高的精确度和鲁棒性,即使对于中大规模问题(城市数大于500),也能以很小的种群和微小的相对误差求得满意解。 相似文献
2.
3.
主要研究了用遗传算法求解TSP问题.阐述了简单遗传算法的设计方法、基本原理和基本步骤.描述了简单遗传算法在TSP问题中的应用现状.根据种群个体的多样性和分布情况,提出了判定遗传算法的截止代数.简单遗传算法具有易于陷入局部最优解、收敛速度慢的特点,针对这些特点,通过改进交叉算子,加入初始化启发信息,提高了遗传算法解的精度和收敛性. 相似文献
4.
基于遗传算法求解TSP问题的一种算法 总被引:12,自引:1,他引:12
TSP问题是一个经典的NP难度的组合优化问题,遗传算法是求解TSP问题的有效方法之一。利用交换启发交叉算子实现局部搜索加快算法的收敛速度和利用变换变异算子维持群体的多样性防止算法早熟收敛,给出了一种求解TSP问题的遗传算法。仿真实验结果表明了该算法的有效性和可行性。 相似文献
5.
一种改进的遗传算法及其在TSP中的实现 总被引:4,自引:1,他引:4
TSP问题是典型的NP完全问题,遗传算法是求解NP完全问题的一种方法。文章针对TSP问题.提出了一种改进的遗传算法。在遗传算法中引入进化算法的思想,在此基础上提出顶端培育策略和分阶段策略,以求在保证群体多样性的同时加快收敛速度。在算法的仿真和测试中,改进后的算法明显优于传统的遗传算法。这表明,该算法具有良好的可行性和实用性。 相似文献
6.
混合编码差分进化算法求解含邻域Dubins旅行商问题 总被引:2,自引:0,他引:2
含邻域Dubins旅行商问题(DTSPN)是一个具有挑战性的混合变量优化问题,它源于Dubins车的运动规划,例如轨迹受曲率约束的高速飞行器.本文在对DTSPN的相关研究进行综述的基础上,提出两种混合编码差分进化算法来有效求解DTSPN,这两种算法分别采用完整编码方案和部分编码方案.完整编码差分进化算法在整个解空间中搜索最优的Dubins路径,有利于充分探索搜索空间.通过对Dubins车在相邻两点间移动时的终端朝向进行松弛,本文提出一种部分编码差分进化算法,在解的质量和计算时间方面实现了较好的权衡.比较性计算实验包含两种差分进化算法以及现有文献中的两种先进DTSPN算法,实验结果表明基于终端朝向松弛和部分编码的差分进化算法能够以较小的计算代价得到DTSPN的高质量解,明显优于其他算法. 相似文献
7.
混洗蛙跳算法(SFLA)具有算法简单、控制参数少、易于实现等优点,但在高维难优化问题中算法容易早熟收敛且求解精度不高。导致该缺陷的主要原因是在进化后期种群多样性迅速下降,且缺乏局部细化搜索能力。借鉴差分进化算法(DE)中DE/best/1/bin版本具有全局搜索能力较强、种群多样性较好的优点,将SFLA与DE有机融合,形成混合优化算法(SFL-DE),以克服SFLA容易早熟收敛的缺陷。给出了6个30维benchmark问题数值对比实验,结果表明,在给定的较小进化代数内,SFL-DE的寻优效率、计算精度、鲁棒性等性能优于SFLA和基本DE(DE/best/1/bin和DE/rand/1/bin),不足之处是其耗时更长。 相似文献
8.
一种求解TSP的混合遗传蚁群算法 总被引:4,自引:1,他引:4
结合遗传算法和蚁群算法,提出了一种求解TSP的基于启发式遗传信息的蚁群遗传算法。该算法由蚁群遗传算法和基于启发式遗传信息的蚁群算法两部分组成。蚁群遗传算法将蚁群算法和遗传算法结合起来,提高了遗传算法的种群的多样性;基于启发式遗传信息的蚁群算法是将启发式遗传信息加入到蚁群算法中,防止蚁群算法对信息素过分依赖,缩小最优解的搜索空间。HGI ACGA算法是将启发式遗传信息加入到蚁群遗传算法中,可以提高蚁群算法的收敛速度和寻优能力。实验结果表明,HGI ACGA算法在收敛速度和收敛精度上均优于ACGA和ACA算法。 相似文献
9.
10.
11.
12.
对Inver-over算子进行了改进,提出了1st-Inver-over算子和2nd-Inver-over算子,实现了求解TSP问题的基于改进Inver-over算子的二阶段演化算法(Two-stage Inver-over EA)。在算法前期,只采用1st-Inver-over算子来保证算法的收敛速度;在算法后期,根据种群的多样性自适应地选取1st-Inver-over算子和2nd-Inver-over算子来协调算法的收敛速度和种群的多样性。在TSPLIB(Traveling Salesman Problem Library)中的典型实例上的实验结果表明,Two-stage Inver-over EA比经典的GT算法具有更好的收敛性和搜索效率。 相似文献
13.
同类商品集送一体化的旅行商问题是经典TSP问题的一种新变体,建立了该问题的数学模型,根据该问题的特征,结合局域搜索优化算法,改进了遗传算法的交叉、变异算子。对算例的求解证明了遗传算法在解决1-PDTSP问题上优越性。 相似文献
14.
针对TSP问题的特点,设计了一种求解TSP问题的改进的混合蛙跳算法。该算法改进了子种群青蛙个体优化的方式,而不仅是对最坏个体进行优化,这种方式可以有效提高算法的收敛速度。提出了青蛙个体翻转时依赖于全局最优解的“导优”概率和依赖于子种群局部最优解的“导次优”概率,进一步提高了算法寻找最优解的能力。在多个TSPLIB上的实验结果表明,该算法是可行有效的。 相似文献
15.
针对蚁群算法在求解旅行商问题容易出现搜索精度不高的问题,提出一种结合排出算法的最大-最小蚁群系统算法(MMAS-EC)。算法采用全局寻优和局部搜索结合的策略,利用寻优效果较好的最大-最小蚁群系统指导全局搜索方向,同时引入排出算法来探索局部解空间,并采用2-opt操作减小了排出算法对初始位置的依赖,提高了解的稳定性。仿真实验表明:结合了排出算法的最大-最小蚁群系统算法与标准蚁群算法相比,在时间开销增加较小的情况下,取得了质量更高的解。 相似文献
16.
鉴于旅行商问题是一个NP难问题,而猴群算法是一种新的群体智能优化算法,因此,利用猴群算法给出旅行商问题的求解。在分析了旅行商问题的特点后,采用整数编码的方式来表示猴群的位置,这样就解决了猴群算法在求解含有离散变量的组合优化问题时,算法中的爬过程失效的问题,有效地利用猴群算法求解旅行商问题。为了提高猴群算法的性能,在猴群算法的爬过程中,引入好动策略,给出改进算法,并将其应用到求解旅行商问题。在仿真实验中,与其他算法进行比较,结果表明利用改进猴群算法能够有效地求解旅行商问题。 相似文献
17.
In this paper, a hybrid genetic algorithm (GA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD). In our algorithm, a novel pheromone-based crossover operator is advanced that utilizes both local and global information to construct offspring. In addition, a local search procedure is integrated into the GA to accelerate convergence. The proposed GA has been tested on benchmark instances, and the computational results show that it gives better convergence than existing heuristics. 相似文献
18.
19.
求解旅行商问题的整体优先算法 总被引:1,自引:0,他引:1
针对欧几里德旅行商问题,提出了一种“整体优先”算法。该算法的基本思路是边构造边调整路径,在调整中采用了独创的逆向调整方法,避免算法陷入局部优化陷阱。理论分析和大量实验结果表明,该算法不仅时间复杂度和空间复杂度低,寻优能力也相当强,其综合性能超过目前的一些主流算法。 相似文献