首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern electronics products relentlessly become more complex, higher in density and speed, and thinner and lighter for greater portability. The package of these products is therefore critical. The reliability of the interconnection of electronics packaging has become a critical issue. In this study, the novel testing methods for electronic packaging are introduced and failure mechanisms of electronic packaging are explained. Electronics packaging is subjected to mechanical vibration and thermal cyclic loads which lead to fatigue crack initiation, propagation and the ultimate fracture of the packaging. A small-sized electromagnetic-type bending cycling tester, a micro-mechanical testing machine, and thermal fatigue testing apparatus were specially developed for the reliability assessment of electronics packaging. The long-term reliability of an electronic component under cyclic bending induced high-cycle fatigue was assessed. The high-cycle bending-fatigue test was performed using an electromagnetic-type testing machine. The time to failure was determined by measuring the changes in resistance. Using the micro-mechanical tester, low cycle fatigues were performed and compared with the results of a finite element analysis to investigate the optimal shape of solder bumps in electronic packaging. Fatigue tests on various lead-free solder materials are discussed. To assess the resistance against thermal loads, pseudo-power cycling method is developed. Thermal fatigue tests of lead-containing and lead-free solder joints of electronic packaging were performed using the pseudo-power cycling tester. The results from the thermal fatigue tests are compared with the mechanical fatigue data in terms of the inelastic energy dissipation per cycle. It was found that the mechanical load has a longer fatigue life than the thermal load at the same inelastic energy dissipation per cycle.  相似文献   

2.
Solder joint fatigue failure is a serious reliability concern in area array technologies, such as flip chip and ball grid array packages of integrated-circuit chips. The selection of different substrate materials could affect solder joint thermal fatigue life significantly. The reliability of solder joints in real flip chip assembly with both rigid and compliant substrates was evaluated by the accelerated temperature cycling test and thermal mechanical analysis. The mechanism of substrate flexibility on improving solder joint thermal fatigue lifetime was investigated by fracture mechanics methods. Two different methods (crack tip opening displacement, CTOD and virtual crack closure technique, VCCT) are used to determine the crack tip parameters which are considered as the indices of reliability of solder joints, including the strain energy release rate and phase angle for the different crack lengths and temperatures. It was found that the thermal fatigue lifetime of solder joints in flip chip on flex assembly (FCOF) was much longer than that of flip chip on rigid board assembly (FCOB). The flex substrates could dissipate energy that otherwise would be absorbed by solder joints, that is, substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during thermal cycling.  相似文献   

3.
The continuous miniaturization of high performance electronic devices has reached a level at which current densities are large enough to make electromigration (EM) a significant issue affecting the electrical and mechanical reliability of solder joints. A new design of solder joints that controls the extent of regions experiencing relatively uniform current density, as well as regions with large current density gradient was developed. Current density distribution of this newly designed solder joint was calculated using finite element analysis (FEA), which was used to guide the characterization of EM of real solder joints. As a part of the effort in evaluating the suitability of the new joint configuration for evaluating the fundamental issues in EM, eutectic PbSn solder joints were fabricated using this design. EM effects due to applied current, current density distribution, and joint thickness of eutectic PbSn solder joints present in this joint configuration were investigated. Findings based on this new design can facilitate fundamental studies of EM issues that affect the reliability of solder joints.  相似文献   

4.
The intermetallic compound (IMC) growth behavior at SnAgCu/Cu solder joint interface under different thermal aging conditions was investigated, in order to develop a framework for correlating IMC layer growth behavior between isothermal and thermomechanical cycling (TMC) effects. Based upon an analysis of displacements for actual flip-chip solder joint during temperature cycling, a special bimetallic loading frame with single joint-shear sample as well as TMC tests were designed and used to research the interfacial IMC growth behavior in SnAgCu/Cu solder joint, with a focus on the influence of stress–strain cycling on the growth kinetics. An equivalent model for IMC growth was derived to describe the interfacial Cu-Sn IMC growth behavior subjected to TMC aging as well as isothermal aging based on the proposed “equivalent aging time” and “effective aging time”. Isothermal aging, thermal cycling (TC) and TMC tests were conducted for parameter determination of the IMC growth model as well as the growth kinetic analysis. The SnAgCu/Cu solder joints were isothermally aged at 125, 150 and 175 °C, while the TC and TMC tests were performed within the temperature range from ?40 to 125 °C. The statistical results of IMC layer thickness showed that the IMC growth for TMC was accelerated compared to that of isothermal aging based on the same “effective aging time”. The IMC growth model proposed here is fit for predicting the IMC layer thickness for SnAgCu/Cu solder joint after any isothermal aging time or thermomechanical cycles. In addition, the results of microstructure evolution observation of SnAgCu/Cu solder joint subjected to TMC revealed that the interfacial zone was the weak link of the solder joint, and the interfacial IMC growth had important influence on the thermomechanical fatigue fracture of the solder joint.  相似文献   

5.
Lead-free electronic packages intended for use in applications such as aerospace, military, and other highly demanding service conditions, necessitate exceptional mechanical reliability of lead-free electronic solder joints under realistic service conditions. Most current design strategies employed for improving the reliability of lead-free electronic solder joints are aimed at developing suitable alloying additions and reinforcements to the solder itself. At present there exists no suitable methodology to minimize the effects of service conditions while the solder joint is in service. Since thermomechanical fatigue reliability of electronic solder joints is closely related to the crack nucleation that occurs during very early stages of repeated thermal excursions, this study is based on subjecting solder joints to a limited number of thermal shock (TS) cycles in a chosen temperature regime to nucleate cracks, then evaluating their effectiveness in improving reliability when the solder joints are subjected to additional TS cycles in a different temperature regime. This study is a preliminary investigation, aimed at developing suitable methodology to minimize the effects of damage to lead-free solder joint specimens subjected to repeated thermal excursions during service, by imposing appropriate thermal treatments. These thermal treatments can be automatically implemented at programmed intervals during the service life of the electronic packages. Methods employed in these studies may also be useful to enhance long-term service reliability and to obtain a conservative estimate of long-term service reliability.  相似文献   

6.
Electromigration issues in lead-free solder joints   总被引:3,自引:0,他引:3  
As the microelectronic industry advances to Pb-free solders due to environmental concerns, electromigration (EM) has become a critical issue for fine-pitch packaging as the diameter of the solder bump continues decreasing and the current that each bump carries keeps rising owing to higher performance requirement of electronic devices. As stated in 2003 International Technology Roadmap for Semiconductors (ITRS), the EM is expected to be the limiting factor for high-density packages. This paper reviews general background of EM, current understanding of EM in solder joints, and technical hurdles to be addressed as well as possible solutions. It is found that the EM lifetimes of Pb-free solder bumps are between the high-Pb and the eutectic composition under the same testing condition. However, our simulation results show that the electrical and thermal characteristics remain essentially almost the same during accelerated EM tests when the Pb-containing solders are replaced by Pb-free solders, suggesting that the melting points of the solders are likely the dominant factor in determining EM lifetimes. The EM behavior in Pb-free solder is a complicated phenomenon as multiple driving forces coexist in the joints and each joint contains more than four elements with distinct susceptibility to each driving force. Therefore, atomic transport due to electrical and thermal driving forces during EM is also investigated. In addition, several approaches are presented to reduce undesirable current crowding and Joule heating effects to improve EM resistance.  相似文献   

7.
焊点高度和焊盘尺寸相同情况下,分析焊点形状(桶形、柱形、沙漏形)对BGA封装在板级跌落冲击载荷下可靠性的影响。根据不同焊点形状建立3种3D有限元模型,采用Input-G方法将加速度曲线作为数值模型的载荷输入,对BGA封装件在板级跌落冲击载荷下的可靠性进行分析。结果表明:在跌落冲击过程中,在0.1ms左右PCB板出现最大弯曲变形;焊点形状对BGA封装件在跌落冲击过程中的可靠性有较大的影响;以最大剥离应力作为失效准则对三种焊点进行寿命预测, 沙漏形焊点的平均碰撞寿命值最大,其次是柱形焊点,桶形焊点最小,表明沙漏形焊点在跌落测试中表现出较好的抗跌落碰撞性能。  相似文献   

8.
Lead-free solders were never an industry choice until government legislation, their wide spread use is still in its infancy due to long term reliability issues. A specific SAC (Tin-Silver-Copper) family of solder alloys has emerged as the favourite to offer technical advantages as well as meeting those legislative requirements. This paper investigates accelerated life behaviour of lead-free solder joints and printed circuit boards using thermal and electrical stress cycling. The aim is to understand the degradation of these materials in a practical operating environment. Whilst corrosion and debris deposits have been found, no significant evidence has been obtained for tin whiskering. EDX analysis has shown the presence of high concentrations of elements considered to arise from the packaging material. Thermal cycling tests have presented an aggressive environment to the samples and the effect on them has been supported by microscopic and macroscopic observations of debris and corrosion. The electrical behaviour, i.e., the joint resistance, has not however, significantly degraded.  相似文献   

9.
Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints   总被引:2,自引:0,他引:2  
The eutectic SnBi solder alloy is a candidate for Pb-free replacement of the conventional eutectic SnPb solders. This study presents series of results on the binary eutectic SnBi and ternary SnBi-1 wt % Cu a solder joints. Compositional analysis and wettability of the as-fabricated solder alloys are reported. In addition, microstructure, adhesion strength, fracture surface and contact resistance of the solder joints are also evaluated. The results of the wetting balance show that the addition of 1 wt % Cu has little effect on the contact angle of the eutectic SnBi solder alloy with various metallization layers. The adhesion strength of solder joints degrades abruptly after 2000 thermal cycles. In addition, thermal cycling would result in cracking in the solder joints, which is due to the mismatch in thermal expansion coefficients. Portions of the thermal fatigue cracks nucleate at the edge of the solder fillet, and then propagate along the solder/conductor interface. Some cracks are, however, through the Al2O3 substrate. The contact resistance of the solder/Cu joint does not increase after thermal cycling since the resistivity of Cu6Sn5 is lower than that of the solder. The solder joints of 42Sn-58Bi/Cu, SnBi-1Cu/Cu, 42Sn-58Bi/PtAg, and SnBi-1Cu/PtAg assemblies maintain their integrity after 2000 thermal cycles since the increase in contact resistance is rather small (ΔR<0.5 mΩ).  相似文献   

10.
The base materials of package and ferrule are often gold-coated Kovar and Invar, they both have relatively low coefficient of thermal expansion (CTE). Solder 63Sn37Pb dissolves Au substantially and forms brittle AuSn4, which may cause catastrophic failure in the fiber-solder-ferrule (FSF) joint in the long-term application. It is well known that thermal fatigue creep is one of the crucial factors affecting the life and reliability of a solder joint in electronic and optoelectronic assemblies. Therefore, it is important to understand the behavior of the FSF joint under thermal cyclic loading. In this study, four different thicknesses of solder filler in a FSF joint were examined. By using the finite element method (FEM), the equivalent creep strains of eutectic lead-tin solder were compared. The joints were subjected to 5 cycles of temperature cycling test, i.e., −65 to 150C. It was found that the thicker solder filler is subjected to a larger equivalent creep strain than the thinner solder filler. It is discussed the vertical shift of the optical fiber, which is sensitive to temperature and has effects on the power loss coupling. Modeling and experimental results show that 0.5 mm is the best inner diameter of ferrule that provides the lowest displacement and, thus, the lowest power loss under temperature cycle.  相似文献   

11.
研究了热循环过程中SnAgCu/Cu焊点界面金属间化合物的生长规律及焊点疲劳失效行为。提出了热循环条件下金属间化合物生长的等效方程以及焊点界面区不均匀体模型,并用有限元模拟的方法分析了热循环条件下焊点界面区的应力应变场分布及焊点失效模式。研究结果表明:低温极限较低的热循环,对应焊点的寿命较低。焊点的失效表现为钎料与金属间化合物的界面失效,且金属间化合物厚度越大,焊点中的累加塑性功密度越大,焊点越容易失效。  相似文献   

12.
Abstract

This paper applies the submodeling technique in analyzing thermal cycling reliability of high performance flip‐chip ball grid array package assemblies. The packages have one‐piece tunnel‐type heat spreaders with different lead widths, connected to chips using different thermal interface materials. The global model contains no solder bumps to simplify the analysis. The calculated displacement field of the global model is then interpolated on the boundary of the submodel that contains the critical solder bump. The submodel is solved using the prescribed displacement boundary conditions together with external thermal loads to evaluate thermomechanical reliability of the critical solder bump.  相似文献   

13.
Sn–Ag–Cu (SAC) alloys are regarded as the most promising alternative for traditional Pb–Sn solders used in electronic packaging applications. However, the higher reflow temperature requirement, possible intermetallic formation, and reliability issues of SAC alloys generate several key challenges for successful adoption of Pb-free solder for next generation electronic packaging needs. Localized heating in interconnects can alleviate thermal stresses by preventing subjection of entire package to the higher reflow temperatures associated with the SAC solders. It had been demonstrated that SAC solder–FeCo magnetic nanoparticles (MNPs) composite paste can be reflowed locally with AC magnetic fields, enabling interconnect formation in area array packages while minimizing eddy current heating in the printed circuit board.Solder/magnetic nanocomposite pastes with varying MNP concentration were reflowed using AC magnetic fields. Differential scanning calorimetry results show a reduced undercooling of the composite pastes with the addition of MNPs. TEM results show that the FeCo MNPs are distributed in Sn matrix of the reflowed solder composites. Optical and SEM micrographs show a decrease in Sn dendrite regions as well as smaller and more homogeneous dispersed Ag3Sn with the addition of MNPs. The MNPs promote Sn solidification by providing more heterogeneous nucleation sites at relatively low undercoolings. The mechanical properties were measured by nanoindentation. The modulus, hardness, and creep resistance, increase with the MNP concentration. The enhanced mechanical properties are attributed to grain boundary and dispersion strengthening.The reflow of solder composites have been modeled based on eddy current power loss in the substrate and magnetic power losses in the solder bumps. Induction reflow of pure solder bumps (<300 μm) in an area array package using 500 Oe magnetic field at 300 kHz requires excessive eddy current power loss in the substrate, resulting in extreme temperatures that lead to blistering and delamination of the substrate. Solder–MNP composites with modest MNP loading showed temperature increases sufficient to achieve solder reflow when subjected to the same AC magnetic fields. Thermomechanical behavior of a solder joint was also modeled under cyclic temperature variations. The stress and strain are highly localized at the interface between solder and substrate. Plastic work accumulated per cycle can be used for lifetime prediction.In this article we review lead-containing and lead-free solder systems, and the electronic packaging technologies pertinent to soldering process. Recent research on the effects of MNPs on localized heating, microstructure evolution, mechanical properties, and thermomechanical reliability are summarized.  相似文献   

14.
Abstract

Copper plates joined with a thin solder layer (60 μm thick) of Sn - 3.8 wt-%Ag - 1.2 wt-% Cu alloy were subjected to heat treatments: a thermal cycling of a temperature range between 321 K and 381 K (Δ T = 60 K) and an isothermal heating at 357 K, and then subjected to a fatigue test at 6 MPa stress amplitude. Solder joints made with a thin solder layer of Sn - Pb eutectic alloy were also examined for comparison. After heat treatments, the η phase developed and dispersed at the bonding interface of the solder joints with increasing numbers of thermal cycling and with increasing time of isothermal heating. Small voids also appeared in the η phase after heat treatments. Fine cracks appeared in the η phase after thermal cycling for 2000 cycles and higher, but no cracks were observed after isothermal heating. There was no large difference in fatigue lifetime after thermal cycling between Sn - Ag - Cu alloy solder joints and Sn - Pb eutectic alloy solder joints. The fatigue lifetime of Sn - Ag - Cu alloy solder joints and Sn - Pb eutectic alloy solder joints was 2 - 3 × 105 with no thermal cycling and was greatly reduced to 0.1 - 0.6 × 105 after 8000 thermal cycles. The fatigue lifetime was also decreased to 0.6 - 1.0 × 105 after isothermal heating for 16 000 min, but the decrease in fatigue lifetime was gradual compared to that after thermal cycling. The decrease in fatigue lifetime after smaller numbers of thermal cycles is explained by coarsening of the η phase, and the large decrease in fatigue lifetime after a large number of thermal cycles is explained by the appearance of cracks in the η phase during thermal cycling.  相似文献   

15.
Glass is an ideal substrate material to enable 2.5D and 3D packaging of ICs at low cost and high performance. However, it is a brittle material and is prone to failures during fabrication and operation. Large coefficient of thermal expansion (CTE) mismatch between copper and glass leads to thermomechanical stresses that can lead to glass cracking and delamination from glass interfaces. This paper focuses on modeling and reliability characterization of copper-plated through-package-vias (TPV) in glass packages. Thermomechanical simulations were carried out to obtain design guidelines for reliable TPVs in glass. Test-vehicles with different glass thicknesses and copper TPV fabrication conditions were fabricated for thermal cycling tests, resistance monitoring and failure analysis. The reliability characterization results showed good thermomechanical reliability of TPVs in ultra-thin glass panels.  相似文献   

16.
对倒装焊电子封装可靠性进行了热循环实验和有限元模拟,结果表明,有底充胶(underfill)时,SnPb焊点的热循环寿命可提高约16倍,并确定了Coffin-Manson半经验方程的参数,采用3种底充胶材料模型,亦即定常弹性模型,温度相关弹性模型和粘弹性材料模型,描述了底充胶U8347-3的力学性能。模拟结果表明,材料模型影响计算得到的SnPb焊点的塑性应范围,封装形变以及底充胶/芯片界面应力,采用弹性材料模型可能过高估计了SnPb焊点的热循环寿命和界面应力。  相似文献   

17.
基于有限元法,结合子模型技术对倒装芯片球栅阵列封装(FCBGA)进行电-热-结构耦合分析,获得关键焊点的电流密度分布、温度分布和应力分布,采用原子通量散度法(AFD)和原子密度积分法(ADI)对关键焊点的电迁移(EM)特性及影响因素进行研究。结合焊点电迁移失效的SEM图,发现综合考虑电子风力、应力梯度、温度梯度以及原子密度梯度四种电迁移驱动机制的原子密度积分法能比较准确地预测焊点的电迁移失效位置,原子密度梯度(化学势)通常会延缓电迁移现象。  相似文献   

18.
Solder joints experience thermomechanical fatigue (TMF) as a consequence of thermal stresses that arise from coefficient of thermal expansion (CTE) mismatches between various entities present in the joint under thermal excursions. Sn present in solder joints made with alloys containing significant amounts of Sn, exists in a body centred tetragonal (BCT) structure, under normally realized thermal excursion regimes encountered during service. BCT Sn exhibits significant anisotropic behaviour in its physical and mechanical properties as a consequence of its highly unusual c/a ratio of about 0.5. Such severe anisotropy causes significant stresses at the Sn grain boundaries present within the solder joints during thermal excursions, resulting in damage accumulation within the solder. Stresses resulting from this anisotropy can be much larger than those that can arise from CTE mismatches between entities such as solder/substrate, solder/intermetallics etc. Damage accumulation under TMF progresses in the severely constrained region of the solder/substrate interface, and causes the initiation and propagation of the catastrophic crack. This crack propagates within the solder in a region very close to the solder/substrate interface and results in the TMF failure of the joint.  相似文献   

19.
Abstract

Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.  相似文献   

20.
Two kinds of CBGA (ceramic ball grid array) assemblies were made by reflow soldering process using two different Pb-free solders. Microstructural evolution and cracks induced by thermal cycling in CBGA assemblies were examined by scanning electron microscopy (SEM) and finite element method (FEM). Before thermal cycling, intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn were observed at the solder interface between Cu and Ag metallizations, respectively. After thermal cycling, another IMC Cu3Sn was observed near the Cu pad in both two assemblies and the layers of Cu6Sn5 and Ag3Sn became thicker. As a result of thermal cycling, cyclic stress and strain were accumulated in the solder joint leading to fatigue cracking. Both experiments and FEM revealed that cracks preferred to initiate at the corner of each solder joint. Multi-modes of the crack propagation were found in the two assemblies. Based on Coffin-Manson equation, the thermal fatigue life was calculated and the predicted life showed good agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号