首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We consider the H-optimal sensitivity problem for delay systems. In particular, we consider computation of μ:= inf {|W-φq| : q ε H(j )} where W(s) is any function in RH(j ), and φ in H(j ) is any inner function. We derive a new explicit solution in the pure delay case where φ = e−sh, h > 0.  相似文献   

2.
We show that the sample complexity of qorst-case H-identification is of order n2, by proving that the minimal length of a fractional H-cover for Cn, regarded as the linear space of complex-valued sequences of length n, is of order n2. A unit vector u in is a fractional H-cover for Cn if for some

for all rh ε Cn, where is the z-transform of h. We also give similar results for real-valued sequences.  相似文献   

3.
A variety of H optimal design problems reduce to interpolation of compressed multiplication operators, f(s) → πk(w(s)f(s)), where w(s) is a given rational function and the subspace K is of the form K=H2 φ(s)H2. Here we consider φ(s) = (1-eα-5)/(s - α), which stands for a distributed delay in a system's input. The interpolation scheme we develop, adapts to a broader class of distributed lags, namely, those determined by transfer functions of the form B(es)/b(s), where B(z) and b(s) are polynomials and b(s) = 0 implies B(es) = 0.  相似文献   

4.
Let T be a strongly continuous semigroup on a Banach space X and A its infinitesimal generator. We will prove that T is exponentially stable, if and only if, there exist p[1,∞) such that the space is admissible to the system Σ(A,I,I), defined below (i.e for all f belonging to the Sobolev space the convolution T*f lies in .  相似文献   

5.
Let X be a topological space. The closure of Δ={(x,x):xX} in X×X is a symmetric relation on X. We characterise those equivalence relations on an infinite set that arise as the closure of the diagonal with respect to a T1-topology.  相似文献   

6.
Let A be a generator of a strongly continuous semigroup of operators, and assume that C and H are operators such that A + CH generates a strongly continuous semigroup SH(t) on X. Let λ0 be a real number in the resolvent set of A, and let ε [−1, 1]. Then there are some fairly unrestrictive conditions under which A+(λ0A)CH0A) also generates a strongly continuous semigroup SK(t) on X which has the same exponential growth rate as SH(t). Given an input operator B, we can use this to identify a class of feedback perturbations K such that A + BK generates a strongly continuous semigroup. We can also use this result to identify classes of feedbacks which can and cannot uniformly stabilize a system. For example, we show that if the control on a cantilever beam in the state space H02[0, 1] × L2[0, 1] is a moment force on the free end, then we cannot stabilize the beam with an A−1/2-bounded feedback, but we can find an A−1/4-bounded feedback, for any > 0, which does stabilize the beam.  相似文献   

7.
A solution is presented for the previously unsolved diagonally scaled multivariable infinity-norm optimization problem of minimizing D(s)(A(s) + Ψ(s) X(s))D−1(s) over the set of stable minimum-phase diagonal D(s) and stable X(s). This problem is of central importance in the synthesis of feedback control laws for robust stability and insensitivity in the presence of ‘structured’ plant uncertainty. The result facilitates the design of feedback controllers which optimize the ‘excess stability margin’ [3] (or, equivalently, the ‘structured singular value μ’ [4]) of diagonally perturbed feedback systems.  相似文献   

8.
In this note we show how to solve the H-optimal sensitivity problem for a SISO plant P(s) = P1(s)P2(s), given the solutions for P1(s), P2(s). This allows us to solve the problem for systems of the form ehsP0(s), where P0(s) is the transfer function of a stable, LTI, finite dimensional system.  相似文献   

9.
In this paper, we examine the pole location of the feedback system composed of the nominal plant and the H central controller designed by the robust stability-degree assignment. Namely, the exact pole location at γ=∞ and the behavior near the infimum of γ are clarified where γ is the upper bound of the H norm constraint. The original design goal is to stabilize the plant against additive perturbations with the regional pole placement condition Re s<−α, and the design problem is reduced to the one-block H control problem.  相似文献   

10.
Given two strings X=a1an and P=b1bm over an alphabet Σ, the problem of testing whether P occurs as a subsequence of X is trivially solved in linear time. It is also known that a simple O(n log |Σ|) time preprocessing of X makes it easy to decide subsequently, for any P and in at most |P| log |Σ| character comparisons, whether P is a subsequence of X. These problems become more complicated if one asks instead whether P occurs as a subsequence of some substring Y of X of bounded length. This paper presents an automaton built on the textstring X and capable of identifying all distinct minimal substrings Y of X having P as a subsequence. By a substring Y being minimal with respect to P, it is meant that P is not a subsequence of any proper substring of Y. For every minimal substring Y, the automaton recognizes the occurrence of P having the lexicographically smallest sequence of symbol positions in Y. It is not difficult to realize such an automaton in time and space O(n2) for a text of n characters. One result of this paper consists of bringing those bounds down to linear or O(n log n), respectively, depending on whether the alphabet is bounded or of arbitrary size, thereby matching the corresponding complexities of automata constructions for offline exact string searching. Having built the automaton, the search for all lexicographically earliest occurrences of P in X is carried out in time O(∑i=1mrocci·i) or O(n+∑i=1mrocci·i· log n), depending on whether the alphabet is fixed or arbitrary, where rocci is the number of distinct minimal substrings of X having b1bi as a subsequence (note that each such substring may occur many times in X but is counted only once in the bound). All log factors appearing in the above bounds can be further reduced to log log by resorting to known integer-handling data structures.  相似文献   

11.
Recent papers have considered the problem of minimizing an entropy functional subject to an H performance constraint. Since the entropy is an upper bound for the H2 cost, there remains a gap between entropy minimization and H2 minimization. In this paper we consider a generalized cost functional involving both H2 and entropy aspects. This approach thus provides a means for optimizing H2 performance within H control design.  相似文献   

12.
The first part of the paper concerns the existence of strongly stabilizing solutions to the standard algebraic Riccati equation for a class of infinite-dimensional systems of the form Σ(A,B,S−1/2B*,D), where A is dissipative and all the other operators are bounded. These systems are not exponentially stabilizable and so the standard theory is not applicable. The second part uses the Riccati equation results to give formulas for normalized coprime factorizations over H for positive real transfer functions of the form D+S−1/2B*(authorA)−1,B.  相似文献   

13.
Nonlinear eigenvalue problems for quasilinear systems   总被引:1,自引:0,他引:1  
The paper deals with the existence of positive solutions for the quasilinear system (Φ(u'))' + λh(t)f(u) = 0,0 < t < 1 with the boundary condition u(0) = u(1) = 0. The vector-valued function Φ is defined by Φ(u) = (q(t)(p(t)u1), …, q(t)(p(t)un)), where u = (u1, …, un), andcovers the two important cases (u) = u and (u) = up > 1, h(t) = diag[h1(t), …, hn(t)] and f(u) = (f1(u), …, fn (u)). Assume that fi and hi are nonnegative continuous. For u = (u1, …, un), let
, f0 = maxf10, …, fn0 and f = maxf1, …, fn. We prove that the boundary value problem has a positive solution, for certain finite intervals of λ, if one of f0 and f is large enough and the other one is small enough. Our methods employ fixed-point theorem in a cone.  相似文献   

14.
For a linear time invariant system, the infinity-norm of the transfer function can be used as a measure of the gain of the system. This notion of system gain is ideally suited to the frequency domain design techniques such as H optimal control. Another measure of the gain of a system is the H2 norm, which is often associated with the LQG optimal control problem. The only known connection between these two norms is that, for discrete time transfer functions, the H2 norm is bounded by the H norm. It is shown in this paper that, given precise or certain partial knowledge of the poles of the transfer function, it is possible to obtain an upper bound of the H norm as a function of the H2 norm, both in the continuous and discrete time cases. It is also shown that, in continuous time, the H2 norm can be bounded by a function of the H norm and the bandwidth of the system.  相似文献   

15.
We consider a special case of the problem of computing the Galois group of a system of linear ordinary differential equations Y′ = MY, M C (x)n × n. We assume that C is a computable, characteristic-zero, algebraically closed constant field with a factorization algorithm. There exists a decision procedure, due to Compoint and Singer, to compute the group in case the system is completely reducible. Berman and Singer (1999, J. Pure Appl. Algebr., 139, 3–23) address the case in which M = [yjsco5390x.gif M 1 * 0 M 2 ], Y′ = MiY completely reducible for i = 1, 2. Their article shows how to reduce that case to the case of an inhomogeneous system Y′ = AY + B, A C (x)n × n, B C (x)n, Y′ = AY completely reducible. Their article further presents a decision procedure to reduce this inhomogeneous case to the case of the associated homogeneous system Y′ = AY. The latter reduction involves using a cyclic-vector algorithm to find an equivalent inhomogeneous scalar equation L(y) = b,L C(x)[ D ], b C (x), then computing a certain set of factorizations of L in C(x)[D ]; this set is very large and difficult to compute in general. In this article, we give a new and more efficient algorithm to reduce the case of a system Y′ = AY + B,Y′ = AY completely reducible, to that of the associated homogeneous systemY′ = AY. The new method’s improved efficiency comes from replacing the large set of factorizations required by the Berman–Singer method with a single block-diagonal decomposition of the coefficient matrix satisfying certain properties.  相似文献   

16.
The problem of H filtering of stationary discrete-time linear systems with stochastic uncertainties in the state space matrices is addressed, where the uncertainties are modeled as white noise. The relevant cost function is the expected value, with respect to the uncertain parameters, of the standard H performance. A previously developed stochastic bounded real lemma is applied that results in a modified Riccati inequality. This inequality is expressed in a linear matrix inequality form whose solution provides the filter parameters. The method proposed is applied also to the case where, in addition to the stochastic uncertainty, other deterministic parameters of the system are not perfectly known and are assumed to lie in a given polytope. The problem of mixed H2/H filtering for the above system is also treated. The theory developed is demonstrated by a simple tracking example.  相似文献   

17.
In this paper, the H disturbance attenuation problem of bilinear system is discussed. Dynamic game theory is used to solve this bilinear minimax problem. The solvability of H disturbance attenuation in bilinear system is also discussed. The techniques of tensor products and formal power series are employed to solve the nonlinear Bellman-Isaac differential equation. Furthermore, the convergence for the tensor formal series approach of this H control problem is discussed, and the radius of convergence for this H control to be well defined is also obtained.  相似文献   

18.
This paper investigates the problem of H filtering for a class of uncertain continuous-time nonlinear systems with real time-varying parameter uncertainty and unknown initial state. We develop an infinite horizon H filtering methodology which provides both robust stability and a guaranteed H performance for the filtering error irrespective of the parameter uncertainty.  相似文献   

19.
We derive an output feedback controller which stabilizes a system and satisfies a prescribed H norm bound of the closed loop transfer function. The proposed design method is available for any system, i.e. there are no restrictions on D12 and D21. This approach utilizes only algebraic operations, thus proofs are simple and clear.  相似文献   

20.
Let H(z) be a given function in H2 A classical problem in engineering analysis is to find a rational function G (z) ε H2 degree M say, which is closest to H(z) in 2-norm. This problem is typically approached using the cost function |H(z) − G(z)|2, in which G(z) is allowed to vary over the set of Mth-order rational functions in H2 and for which stationary points are sought. We show that each stationary point of degree M of this functional coincides with a weighted Hankel-norm approximant to H(z). The weighting function derives from the outer factor of the error function H(z) − G(z) stationary point of the rational H2 approximation problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号