首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
研究了硅灰分别掺加到混凝土基相和界面中对混凝土界面特征及力学性能的影响,并通过界面调控对混凝土力学性能进行优化,提出了调控混凝土力学性能的关键界面参数——界面区域硅灰质量浓度G.结果表明:界面中的硅灰在提高混凝土强度的同时,降低了混凝土脆性,在掺量较低时对混凝土强度的促进作用远大于基相中的硅灰;参数G能够统一基相和界面中的硅灰作用效果,建立硅灰-界面-强度的关联关系,具有重要的应用价值.  相似文献   

2.
李双喜  胡全  孙兆雄 《混凝土》2011,(12):133-135
工程实践证明,强度越高的混凝土抗冲磨性也相对好,C60~C80高强抗冲磨混凝土属于“以硬碰硬”的抗冲磨材料.只要采用低水胶比,掺加高性能减水剂,优先使用硅灰与矿渣粉或粉煤灰的复合超细掺合料,骨料最大粒径不超过20 mm,精心施工,充分养护,着力从微观上提高、改善骨料与水泥石界面结构黏结强度和水泥石强度,就能轻易配制出C...  相似文献   

3.
用两端带弯钩的钢纤维制作钢纤维增强混凝土梁形试件,研究了用硅灰代替不同量的普通硅酸盐水泥并通过掺加超塑化剂以降低混凝土的水灰比,发现当用硅灰代替10%水泥并同时使水灰比由0.5降至0.37,可使钢纤维增强混凝土小梁的抗弯极限强度与韧性分别提高了79%和63%,拔出试验结果表明,掺硅灰并同时掺塑化剂以降低水灰比有助于提高钢纤维与水泥砂浆的界面粘结强度。对钢与水泥基体界面区微观结构的研究结果表明,掺硅灰与降低水灰比可减少CH晶体在界面区的富集并消弱其取向性,增加C-S-H凝胶的含量并使界面区的孔结构得以明显改善,钢纤维增强混凝土的宏观力学性能与纤维——水泥基体的界面区微结构密切相关。  相似文献   

4.
唐昌辉  黄先太 《混凝土》2021,(12):66-69
基于松散体积法配制同时加入硅灰和粉煤灰两种矿物掺合料的轻骨料混凝土,采用正交试验设计,通过改变净水灰比、粉煤灰掺量、砂率、硅灰掺量四个影响因素,浇筑不同配合比的轻骨料混凝土试块,测定其干表观密度、28 d抗压强度和比强度,分析各影响因素对轻骨料混凝土性能的影响.研究结果表明:硅灰能显著提高轻骨料混凝土抗压强度,且硅灰掺量在3%~6%之间较为合理.并配制出了结构用强度等级为LC30~LC45的双掺硅灰、粉煤灰轻骨料混凝土,为双掺硅灰、粉煤灰轻骨料混凝土的应用提供依据.  相似文献   

5.
对掺加矿渣、粉煤灰、硅灰等矿物掺合料混凝土力学性能进行了研究。结果表明,单掺矿渣与硅灰能提高混凝土的保水性、黏聚性,但对于拌合物流动性的提高要比单掺粉煤灰的差。随着掺量的增加,单掺粉煤灰或矿渣的混凝土强度降低,单掺粉煤灰早期强度下降较大。双掺粉煤灰、矿渣混凝土,混凝土强度随着矿渣掺量的增加而降低;矿渣、粉煤灰掺量分别为30.5%、20.5%时,混凝土91 d的抗压强度要比基准混凝土的抗压强度高。在掺合料总量不小于61%时,AB组混凝土28、91 d的抗折强度和基准混凝土强度比较接近。其91 d强度甚至超过了基准混凝土。双掺粉煤灰、硅灰混凝土,当粉煤灰掺量不变时,单掺硅灰对提高混凝土强度比较显著。对于粉煤灰、矿渣、硅灰三掺的混凝土,与同等掺量的双掺组AB和AC相比,该组混凝土具有较高的抗压强度。  相似文献   

6.
掺纳米SiO2和掺硅粉高强混凝土性能的比较   总被引:11,自引:1,他引:11  
对掺纳米SiO2和掺硅粉高强混凝土性能进行了研究,同时应用XRD和SEM对纳米SiO2、硅粉与水泥硬化浆体/大理石界面中氢氧化钙的反应程度进行了探讨。结果表明,掺入1%~3%纳米SiO2能显著提高混凝土的抗折强度、提高混凝土早期抗压强度和劈裂抗拉强度。掺3%纳米SiO2的混凝土,与掺10%硅粉的混凝土相比,其抗折强度约提高4%~6%,而与不掺硅粉的混凝土相比,其抗折强度约提高31%~57%。在3%相同掺量的条件下,与硅粉比较,纳米SiO2能更有效地吸收水泥硬化浆体/大理石界面中所富集的氢氧化钙,更有效地细化界面中的氢氧化钙晶粒,从而起到改善界面的积极作用。  相似文献   

7.
杨林  宋帅奇  杨静 《混凝土》2012,(12):43-45,49
通过工作性能及抗压、劈拉、抗折强度试验,分析了硅灰对塑性混凝土工作性能和强度的影响。结果表明:塑性混凝土坍落度、扩展度和泌水率随硅灰掺量增加而减小;为提高塑性混凝土强度,硅灰的最佳掺量为30%左右;相同掺量下,硅灰提高塑性混凝土强度由大到小依次为劈拉强度、抗压强度、抗折强度。  相似文献   

8.
用两端带弯钩的钢纤维制作钢纤维增右混凝土梁形试件,研究了用硅灰代替不同量的普通硅酸盐水泥并通过掺加超塑化剂以降低混凝土的水灰比,发现当用硅灰代替10%水泥并同时使水灰比由0.5降至0.37,可使钢纤维增强混凝土小梁的抗弯极限强度与韧性分别提高了70%和63%。拔出试验结果表明,拔硅灰并同时掺塑化剂以降低水灰比有助于提高钢纤维与水泥砂浆的界面粘结强度。对钢与水泥基体界面区微观结构的研究结果表明,掺硅灰与降低水灰比可减少CH晶体在界面区的富集并消弱其取向性,增加C-S-H凝胶的含量并使界面区的孔结构得以明显改善,钢纤维增强混土的宏观力学性能与纤维--水泥基体的界,在区微结构密切相关。  相似文献   

9.
采用不同超细粉配制高性能超高泵送C60混凝土,研究超细矿粉、超细粉煤灰及硅灰对C60混凝土性能的影响。结果表明:超细矿粉及硅灰均降低了混凝土的扩展度并延长了倒坍时间,超细粉煤灰则起到相反的作用,3种超细粉均降低了混凝土的压力泌水率。超细粉掺入后都提高了混凝土力学性能,其中掺超细矿粉及硅灰混凝土早期强度优于掺超细粉煤灰混凝土,但超细粉煤灰混凝土后期强度较好。超细粉促进了水化反应的进行,水泥石结构更加密实,孔隙率降低。掺入8%超细粉煤灰后,混凝土水化温升及自收缩均明显减小。  相似文献   

10.
研究了双掺粉煤灰和硅灰对透水混凝土力学性能、有效孔隙率和透水性的影响,并利用SEM分析了粉煤灰和硅灰双掺透水混凝土的强度形成机理.结果表明:双掺粉煤灰和硅灰,随着硅灰掺量的增加,透水混凝土的有效孔隙率和透水系数先增大后减小,抗压强度先提高后降低;双掺的最佳掺量为粉煤灰15%、硅灰10%,制得的透水混凝土抗压强度为18....  相似文献   

11.
以普通混凝土和橡胶再生混凝土为研究对象,通过掺入硅粉和纤维材料研究强化环保型混凝土抗压性能的方法。用再生混凝土100%等体积代替粗骨料,用橡胶颗粒20%等体积代替细骨料,内掺10%(质量分数)或外掺3%(质量分数)硅粉以及掺入聚丙烯纤维或钢纤维,制备了4组12个混凝土立方体试件,通过轴压试验研究了混凝土试件的破坏模式、抗压强度和工作性能。结果表明:与单一掺入硅粉相比,硅粉和聚丙烯纤维的复合掺入能进一步强化混凝土的抗压性能;硅粉的掺入可以强化浆体与橡胶颗粒间的界面性能,提高钢纤维橡胶再生混凝土的抗压强度;硅粉和纤维材料对混凝土的工作性能有负作用,其复合掺入时建议采用适量的减水剂。  相似文献   

12.
The interfacial transition zone (ITZ) as the weakest position in concrete is always paid much attention. This paper presents the results of an investigation on the interfacial bond between aggregate and matrix in the near surface layer of concrete at the macro- and micro-level. Specimens with different silica fume additions (0%, 6%, 9% and 12% by mass of cement) and cement dosages (400 and 450 kg/m3) were prepared by removing certain near-surface mortar and making coarse aggregates exposed. The interfacial bond properties were evaluated by the pull-out test and microhardness test. It was found that ITZs around the near-surface-zone aggregate were influenced not only by the Wall Effect and the accumulation of microbleeding water under aggregate, but also by the near-surface weakness zone effect. The additional silica fume can successively enhance the interfacial bond strength, decrease the thickness of the near-surface weakness zone and improve ITZs in the near-surface layer of concrete.  相似文献   

13.
提高水泥石—集料界面粘结强度的研究   总被引:23,自引:5,他引:18  
研究了提高普通混凝土中水泥石集料界面粘结强度的途径,结果表明:在水泥中掺加超细矿渣粉,低温浅烧处理大理石集料,集料表面涂以硅烷偶联剂或丁苯胶乳,以低水灰比浆体包裹集料,均可使水泥石集料界面粘结强度得以大幅度提高.对以上提高水泥石集料界面粘结强度的机理进行了讨论.  相似文献   

14.
为提高橡胶混凝土的抗压强度,采用水泥浆包裹橡胶的方法配制混凝土,并进行抗压强度测试;利用SEM、EDXA和显微硬度等测试方法,对混凝土界面过渡区结构进行表征。结果表明:采用水泥浆包裹橡胶集料的方法,与基准混凝土相比较,随橡胶集料掺量的增加,混凝土7d和28d的抗压强度虽有所降低,但降低的幅度较小;橡胶集料掺量30 kg/m~3,混凝土7d和28d的抗压强度分别为普通成型混凝土的141%和136%。水泥浆包裹橡胶法配制的混凝土抗压强度高。  相似文献   

15.
Investigated herein is the effect of temperature on heat development in cement pastes and concretes with and without silica fume cured at relatively high temperatures often encountered in tropical environment. With an initial temperature of 30°C, adiabatic temperature rise of the concrete with 8% silica fume as cement replacement was similar to that of the control Portland cement concrete up to about 18 h. After 24 h, however, the temperature of the silica fume concrete was lower than that of the control concrete. Since the concrete with 8% silica fume had a higher 28-day compressive strength (72.5 MPa) than the control concrete without silica fume (59.2 MPa), the concrete with silica fume is likely to have a lower temperature rise as compared with the control concrete of equivalent 28-day strength by reducing cementitious materials content with the same water content. The extent of heat evolution in the silica fume pastes was generally greater at lower temperatures of 20-50°C, but less at 65°C than in the control paste. At the relatively high curing temperatures, the degree of cement hydration in the paste with silica fume was lower than that in the control cement paste at early ages. However, the pozzolanic reaction started even before 24 h after water was added.  相似文献   

16.
Investigated herein is the effect of temperature on heat development in cement pastes and concretes with and without silica fume cured at relatively high temperatures often encountered in tropical environment. With an initial temperature of 30°C, adiabatic temperature rise of the concrete with 8% silica fume as cement replacement was similar to that of the control Portland cement concrete up to about 18 h. After 24 h, however, the temperature of the silica fume concrete was lower than that of the control concrete. Since the concrete with 8% silica fume had a higher 28-day compressive strength (72.5 MPa) than the control concrete without silica fume (59.2 MPa), the concrete with silica fume is likely to have a lower temperature rise as compared with the control concrete of equivalent 28-day strength by reducing cementitious materials content with the same water content. The extent of heat evolution in the silica fume pastes was generally greater at lower temperatures of 20–50°C, but less at 65°C than in the control paste. At the relatively high curing temperatures, the degree of cement hydration in the paste with silica fume was lower than that in the control cement paste at early ages. However, the pozzolanic reaction started even before 24 h after water was added.  相似文献   

17.
若干因素对多孔透水混凝土性能的影响   总被引:27,自引:1,他引:26  
研究了若干因素如骨料级配与粒径、骨灰比、水灰比、外加剂及搅拌工艺等对多孔透水混凝土的空隙率、透水系数与抗压强度等性能的影响.结果表明:骨料粒径与级配、骨灰比是影响多孔透水混凝土空隙率、透水系数与抗压强度的关键因素;水灰比对多孔透水混凝土的性能影响较小;减水剂、硅灰及聚合物乳液等外加剂可改善多孔透水混凝土的性能;水泥裹石法搅拌工艺对多孔透水混凝土的透水系数影响不大,但能使其抗压强度提高、空隙率下降.  相似文献   

18.
粗骨料粒径和硅灰对混凝土断裂性能影响的试验研究   总被引:2,自引:0,他引:2  
林辰  金贤玉  李宗津 《混凝土》2004,(10):32-34
应用双参数模型确定混凝土在不同粗骨料粒径和不同硅灰掺量时的临界应力强度子(K1c^s)和临界裂缝尖端张开位移(CTPDc),同时利用特征长度l^ch研究粗骨料粒径和硅灰掺量对混凝土脆性的影响。文章也给出了相应的弹性模量、抗压强度以及抗拉强度。试验龄期为28天。试验结果表明,对于高强混凝土最大粗骨料粒径增大,弹性模量和抗压强度减小,而抗拉强度和临界应力强度因子以及材料的脆性增大;对于中等强度混凝土(MSC),硅灰掺量为10%(硅灰/[硅灰 水泥])的混凝土(MSC-SF)的弹性模量、抗压强度、抗拉强度、临界应力强厦因子和脆性都大干不掺硅灰的MSC。  相似文献   

19.
C50再生骨料混凝土的试验   总被引:2,自引:0,他引:2  
刘数华  阎培渝 《工业建筑》2007,37(10):63-65,83
试验采用正交设计的方法,利用再生骨料配制高强(C50)混凝土,同时研究水胶比、再生骨料取代量、硅粉和粉煤灰掺量对再生骨料混凝土和易性和抗压强度的影响。试验结果表明:坍落度随着水胶比的增大、再生骨料取代量和硅粉掺量的减小而增大;粉煤灰掺量对坍落度的影响较小;再生骨料混凝土的抗压强度随着水胶比和再生骨料取代量的降低、硅粉掺量的增加而提高,粉煤灰对抗压强度的影响较小。随着水化的发展,再生骨料对混凝土抗压强度的不利影响将逐渐减小。  相似文献   

20.
低水泥用量的高强度大流动性混凝土研究   总被引:1,自引:1,他引:1  
在研究净浆包裹骨料工艺、外掺硅粉和粉煤灰的增强效果及其增强机理的基础上,根据试验数据,统计出相应的强度公式。采用525号Ⅱ型硅酸盐水泥,水泥用量320~400kg/m3,外掺c×25%的粉煤灰和(c+F)×(5~7.5)%的硅粉,可配制出60~80MPa的高强度大流动性混凝土。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号