首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a new turbo-coding method which parses the input block into n-bit symbols and interleaves on a symbol-by-symbol basis. This is used in conjunction with different modulation techniques to take advantage of tradeoffs between bit error rate performance, code-rate, spectral efficiency, and decoder complexity. The structure of the encoder and decoder of these codes, which We call symbol-based turbo codes, are outlined. The bit error rate performance of a few specific codes are examined. A discussion on decoder complexity is also included. Symbol-based turbo codes are good candidates for low delay transmission of speech and data in spread spectrum communication systems  相似文献   

2.
Multilevel codes show better performance compared with trellis codes on Rayleigh fading channels at comparable decoder complexity and bandwidth. However, they suffer from performance degradation due to error propagation in the multistage decoder. The authors, with a view to minimising the error propagation, compare three multilevel coded 16-QAM schemes which are four-level codes, I/Q separated two-level codes and I/Q separated two-level codes with a new set partitioning  相似文献   

3.
ANewConcatenatedCodingSystemUsingMultilevelInnerCodesWangDuanyiANDYueGuangxin(DepartmentofTelecommunicationEngineering,Beijin...  相似文献   

4.
Iterative decoding of binary block and convolutional codes   总被引:35,自引:0,他引:35  
Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo” (de)coding. Using log-likelihood algebra, we show that any decoder can be used which accepts soft inputs-including a priori values-and delivers soft outputs that can be split into three terms: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the log-likelihood domain are given not only for convolutional codes but also for any linear binary systematic block code. The iteration is controlled by a stop criterion derived from cross entropy, which results in a minimal number of iterations. Optimal and suboptimal decoders with reduced complexity are presented. Simulation results show that very simple component codes are sufficient, block codes are appropriate for high rates and convolutional codes for lower rates less than 2/3. Any combination of block and convolutional component codes is possible. Several interleaving techniques are described. At a bit error rate (BER) of 10-4 the performance is slightly above or around the bounds given by the cutoff rate for reasonably simple block/convolutional component codes, interleaver sizes less than 1000 and for three to six iterations  相似文献   

5.
极化码作为一种新型编码方式,被采纳为5G通信中的短码方案。本文将极化码应用到比特交织编码调制(Bit-Interleaved Coded Modulation,BICM)系统,优化交织器的设计,提出了一种新型交织算法。相比于现有的交织算法,新型交织算法的提出是基于比特信道可靠性衡量参数,将高可靠性的比特信道与低可靠性的比特信道交错设计,按照高可靠性信道对低可靠性信道辅助译码的方式,提高极化码的纠错性能。由于新型交织算法只存在于比特信道可靠度参数的简单排序,在复杂度上没有明显增加。仿真结果表明:新型交织算法具有优异的性能,当误码率为10-5,码长为256时,采用新型交织算法的极化码BICM系统与LDPC码的BICM系统相比大约有1.51 dB的增益。   相似文献   

6.
The multilevel coding technique is used for constructing multilevel trellis M-ary phase-shift-keying (MPSK) modulation codes for the Rayleigh fading channel. In the construction of a code, all the factors which affect the code performance and its decoding complexity are considered. The error performance of some of these codes based on both one-stage optimum decoding and multistage suboptimum decoding has been simulated. The simulation results show that these codes achieve good error performance with small decoding complexity  相似文献   

7.
SISO decoding for block codes can be carried out based on a trellis representation of the code. However, the complexity entailed by such decoding is most often prohibitive and thus prevents practical implementation. This paper examines a new decoding scheme based on the soft-output Viterbi algorithm (SOVA) applied to a sectionalized trellis for linear block codes. The computational complexities of the new SOVA decoder and of the conventional SOVA decoder, based on a bit-level trellis, are theoretically analyzed and derived for different linear block codes. These results are used to obtain optimum sectionalizations of a trellis for SOVA. For comparisons, the optimum sectionalizations for Maximum A Posteriori (MAP) and Maximum Logarithm MAP (Max-Log-MAP) algorithms, and their corresponding computational complexities are included. The results confirm that the new SOVA decoder is the most computationally efficient SISO decoder, in comparisons to MAP and Max-Log-MAP algorithms. The simulation results of the bit error rate (BER) performance, assuming binary phase -- shift keying (BPSK) and additive white Gaussian noise (AWGN) channel, demonstrate that the performance of the new decoding scheme is not degraded. The BER performance of iterative SOVA decoding of serially concatenated block codes shows no difference in the quality of the soft outputs of the new decoding scheme and of the conventional SOVA.  相似文献   

8.
On a Rayleigh-fading channel, multilevel codes achieve larger Hamming distances than single-level codes at comparable decoder complexity and bandwidth efficiency by employing a multistage decoder. Typically, multilevel codes are designed using Ungerboeck's (1982) set partitioning. This results in a large path multiplicity that degrades the code performance significantly. In order to overcome the performance degradation, we propose a set partitioning method that greatly reduces the path multiplicity  相似文献   

9.
Bidirectional multiple-path tree searching algorithms for the decoding of convolutional codes are presented. These suboptimal coding algorithms use a multiple-path breadth-first bidirectional tree exploration procedure and long-memory convolution codes. It is shown that, compared to the usual M-algorithm, the bidirectional exploration considerably reduces the bit error propagation due to correct path loss. Computer simulations using rate-1/2 codes over binary symmetric channels are used to analyze the effect of the number of path extensions, code memory, and frame length on the bit error probability. The results show that with a bit error probability of 10-5, coding gains on the order of 2 dB over the M-algorithm and 1 dB over a Viterbi decoder of equivalent complexity can be achieved  相似文献   

10.
A Bidirectional Efficient Algorithm for Searching code Trees (BEAST) is proposed for efficient soft-output decoding of block codes and concatenated block codes. BEAST operates on trees corresponding to the minimal trellis of a block code and finds a list of the most probable codewords. The complexity of the BEAST search is significantly lower than the complexity of trellis-based algorithms, such as the Viterbi algorithm and its list generalizations. The outputs of BEAST, a list of best codewords and their metrics, are used to obtain approximate a posteriori probabilities (APPs) of the transmitted symbols, yielding a soft-input soft-output (SISO) symbol decoder referred to as the BEAST-APP decoder. This decoder is employed as a component decoder in iterative schemes for decoding of product and incomplete product codes. Its performance and convergence behavior are investigated using extrinsic information transfer (EXIT) charts and compared to existing decoding schemes. It is shown that the BEAST-APP decoder achieves performances close to the Bahl–Cocke–Jelinek–Raviv (BCJR) decoder with a substantially lower computational complexity.   相似文献   

11.
We consider the iterative decoding of generalized low-density (GLD) parity-check codes where, rather than employ an optimal subcode decoder, a Chase (1972) algorithm decoder more commonly associated with "turbo product codes" is used. GLD codes are low-density graph codes in which the constraint nodes are other than single parity-checks. For extended Hamming-based GLD codes, we use bit error rates derived by simulation to demonstrate this new strategy to be successful at higher code rates. For long block lengths, good performance close to capacity is possible with decoding costs reduced further since the Chase decoder employed is an efficient implementation.  相似文献   

12.
LT码和q-LDPC码级联方案在深空通信中的应用   总被引:2,自引:0,他引:2  
该文针对深空通信对长纠删码的需求,提出了LT (Luby Transform)码和q-LDPC码的级联方案。在综合考虑性能和复杂度的情况下,选取8-LDPC码和8PSK的级联作为等效的删除信道,长度选择灵活、编译码简单的LT码实现纠删功能。文中设计了两种短8-LDPC码,并对整个级联系统的纠错性能进行了仿真。仿真结果表明8-LDPC码的性能优于信源信息速率和码率相同的二进制LDPC码,级联系统在等效包删除概率不超过0.1时,系统误比特率以概率1趋于0。  相似文献   

13.
A method for estimating the performance of low-density parity-check (LDPC) codes decoded by hard-decision iterative decoding algorithms on binary symmetric channels (BSCs) is proposed. Based on the enumeration of the smallest weight error patterns that cannot be all corrected by the decoder, this method estimates both the frame error rate (FER) and the bit error rate (BER) of a given LDPC code with very good precision for all crossover probabilities of practical interest. Through a number of examples, we show that the proposed method can be effectively applied to both regular and irregular LDPC codes and to a variety of hard-decision iterative decoding algorithms. Compared with the conventional Monte Carlo simulation, the proposed method has a much smaller computational complexity, particularly for lower error rates.  相似文献   

14.
为了提升非规则准循环低密度奇偶校验(QC-LDPC)码的误码率性能、降低构造算法的复杂度,该文提出一种基于基矩阵排列优化算法的非规则QC-LDPC码构造方法。首先,利用基于外部信息传递(EXIT)图的阈值分析算法得到满足码率和列重要求的非规则QC-LDPC码的最优度分布,然后将围长和短环数量作为新的约束条件对具有最优度分布的码集进行分析,得到具有最优度分布和最少短环数量的最优基矩阵排列结构,最后,根据得到的基矩阵对规则指数矩阵进行置零操作得到目标非规则QC-LDPC码。该构造方法相对于随机构造方法具有更低的实现复杂度,同时可以通过改变算法的参数值实现码长和码率的灵活设计。仿真结果表明,与现有的一些构造方法相比,所提方法构造的非规则QC-LDPC码在加性高斯白噪声(AWGN)信道上具有更好的误码率性能。  相似文献   

15.
On multilevel block modulation codes   总被引:1,自引:0,他引:1  
The multilevel technique for combining block coding and modulation is investigated. A general formulation is presented for multilevel modulation codes in terms of component codes with appropriate distance measures. A specific method for constructing multilevel block modulation codes with interdependency among component codes is proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed method gives a multilevel block modulation code C' that has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest neighbor codewords than that of C . Finally, a technique is presented for analyzing the error performance of block modulation codes for an additive white Gaussian noise (AWGN) channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated by simulation and upper bounds based on their Euclidean weight distributions  相似文献   

16.
Lee  H. 《Electronics letters》2009,45(20):1044-1045
A novel quasi-orthogonal space-time block code (QSTBC) with full-diversity full-rate transmission and double-symbol decoding is proposed for a system with four transmit antennas, which is constructed by linearly combining two optimally power-scaled component Alamouti codes. Compared with the existing QSTBC with optimal constellation rotation, the proposed code provides excellent robustness, in terms of bit error rate performance, against spatially correlated and/or time-selective fading channels.  相似文献   

17.
In this paper, in order to improve error performance, we introduce a new type of turbo codes, called ‘multilevel‐turbo codes (ML‐TC)’ and we evaluate their performance over wide‐sense stationary uncorrelated scattering (WSSUS) multipath channels. The basic idea of ML‐TC scheme is to partition a signal set into several levels and to encode each level separately by a proper component of the turbo encoder. In the considered structure, the parallel input data sequences are encoded by our multilevel scheme and mapped to any modulation type such as MPSK, MQAM, etc. Since WSSUS channels are very severe fading environments, it is needed to pass the received noisy signals through non‐blind or blind equalizers before turbo decoders. In ML‐TC schemes, noisy WSSUS corrupted signal sequence is first processed in equalizer block, then fed into the first level of turbo decoder and the first sequence is estimated from this first Turbo decoder. Subsequently, the other following input sequences of the frame are computed by using the estimated input bit streams of previous levels. Here, as a ML‐TC example, 4PSK 2 level‐turbo codes (2L‐TC) is chosen and its error performance is evaluated in WSSUS channel modelled by COST 207 (Cooperation in the field of Science & Technology, Project #207). It is shown that 2L‐TC signals with equalizer blocks exhibit considerable performance gains even at lower SNR values compared to 8PSK‐turbo trellis coded modulation (TTCM). The simulation results of the proposed scheme have up to 5.5 dB coding gain compared to 8PSK‐TTCM for all cases. It is interesting that after a constant SNR value, 2L‐TC with blind equalizer has better error performance than non‐blind filtered schemes. We conclude that our proposed scheme has promising results compared to classical schemes for all SNR values in WSSUS channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Following a brief historical perspective on channel coding, an introduction to space-time block codes is given. The various space-time codes considered are then concatenated with a range of channel codecs, such as convolutional and block-based turbo codes as well as conventional and turbo trellis codes. The associated estimated complexity issues and memory requirements are also considered. These discussions are followed by a performance study of various space-time and channel-coded transceivers. Our aim is first to identify a space-time code/channel code combination constituting a good engineering tradeoff in terms of its effective throughput, bit-error-rate performance, and estimated complexity. Specifically, the issue of bit-to-symbol mapping is addressed in the context of convolutional codes (CCs) and convolutional coding as well as Bose-Chaudhuri-Hocquenghem coding-based turbo codes in conjunction with an attractive unity-rate space-time code and multilevel modulation is detailed. It is concluded that over the nondispersive or narrow-band fading channels, the best performance versus complexity tradeoff is constituted by Alamouti's twin-antenna block space-time code concatenated with turbo convolutional codes. Further comparisons with space-time trellis codes result in similar conclusions  相似文献   

19.
A neural network (NN)-based decoding algorithm of block Markov superposition transmission (BMST) was researched.The decoders of the basic code with different network structures and representations of training data were implemented using NN.Integrating the NN-based decoder of the basic code in an iterative manner,a sliding window decoding algorithm was presented.To analyze the bit error rate (BER) performance,the genie-aided (GA) lower bounds were presented.The NN-based decoding algorithm of the BMST provides a possible way to apply NN to decode long codes.That means the part of the conventional decoder could be replaced by the NN.Numerical results show that the NN-based decoder of basic code can achieve the BER performance of the maximum likelihood (ML) decoder.For the BMST codes,BER performance of the NN-based decoding algorithm matches well with the GA lower bound and exhibits an extra coding gain.  相似文献   

20.
提出一种采用LDPC乘积码和BICM-ID相结合的编码调制技术.该方案编码采用LDPC乘积码,译码可以采取三个迭代过程:在解调器和译码器之间迭代,LDPC乘积码的分量码之间迭代,以及分量码内部迭代.因此采取合理的迭代译码策略,可以提高的译码效率.仿真结果显示,该方案在AWGN信道和Rayleigh信道条件下,与数字电视地面多媒体广播DTMB采用的编码调制方案相比具有更好的误比特性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号