首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
等通道角挤压变形AZ31镁合金的变形行为   总被引:6,自引:2,他引:4  
研究挤压态和等通道角挤压(EcAE)态AZ31镁合金的变形行为与微观组织的相关性.结果表明,ECAE态AZ31镁合金的室温拉伸屈服强度与晶粒尺寸之间表现出反Hall-Petch关系,且拉压不对称性明显减弱;在室温压缩时表现出应变速率敏感性,并随变形温度升高,应变速率敏感性因子变大.挤压态合金的晶粒度为20 μm,具有典型的挤压丝织构,主要变形方式为基面位错滑移和孪生,导致了合金中明显的拉压不对称性.ECAE态合金平均品粒尺寸约为2μm,织构相对随机化,导致合金压缩时孪生比率明显下降,其他变形模式比率增加,提高了变形抗力,降低了拉压不对称性.ECAE态AZ31镁合金压缩的激活能接近其晶界扩散激活能,晶界滑移在一定程度上导致了合金的反Hall-Peteh关系的出现以及应变速率敏感性的增强.  相似文献   

2.
采用分离式Hopkinson压杆和反射式拉杆装置在室温对挤压态AZ31B镁合金进行了动态压缩和拉伸试验,分析了AZ31B镁合金沿挤压方向压缩和拉伸时的不对称性和应变速率敏感性.结果表明:沿挤压方向压缩时,拉伸孪晶{1012}<1120>首先启动,屈服强度对应变速率不敏感;沿挤压方向拉伸时,拉伸孪晶不能启动,位错滑移参与变形,应变速率敏感性有所提高;由于拉伸孪晶只能单向启动,AZ31B镁合金在挤压方向的动态拉压不对称性显著.  相似文献   

3.
采用分离式霍普金森拉杆及压杆装置,研究挤压态AZ31镁合金高速变形下的各向异性及拉压不对称性,并从微观变形机制的角度探讨具有强烈初始基面织构的挤压态镁合金各向异性及拉压不对称性产生的原因。结果表明:在高速变形条件下,依据加载方向及应力状态挤压态AZ31镁合金的拉伸行为表现出很强的各向异性,但压缩行为的各向异性不明显;在挤压方向表现出很强的拉压不对称性,而在垂直于挤压方向的拉压不对称性很低。挤压态AZ31镁合金宏观上的各向异性及拉压不对称性是由于不同的微观变形机制所引起的。沿挤压方向拉伸的主要变形机制为柱面滑移,沿垂直于挤压方向拉伸及压缩的主要变形机制为锥面滑移;沿挤压方向压缩时初始变形机制为拉伸孪晶,当变形量为0.08(8%)左右时由于孪晶消耗殆尽,变形变而以滑移的方式进行。  相似文献   

4.
镁合金塑性变形机制   总被引:29,自引:0,他引:29  
针对不同晶粒尺寸的镁合金AZ31及添加稀土Ce或Nd的AZ31Ce/AZ31Nd的轧制变形行为,探讨了滑移、孪生和晶界滑动三种变形机制在镁合金塑性变形过程中的作用.结果表明:多种变形机制共同作用可提高镁合金在热变形时的塑性变形能力;合金热变形及再结晶退火后,在平均晶粒尺寸为50 μm以上的大晶粒中,变形机制以滑移和孪生为主,位错运动和增殖会使位错在变形过程中互相缠结、钉扎以及受晶界的阻碍而终止运动;孪生容易发生在不利于滑移的晶粒中促进塑性变形;在5~20μm的小晶粒中,晶界滑动机制发挥了重要作用,它可以协调大尺寸晶粒的变形而对提高镁合金变形能力起有益的补充作用.  相似文献   

5.
对AZ31镁合金在室温下沿轧制板材不同方向进行多向压缩,研究了不同加载路径下AZ31镁合金的力学性能和微观组织演变。结果表明,沿不同方向3道次压缩时,样品表现出不同的力学行为,沿TD(横向)-RD(轧向)-ND(法向)路径压缩时,材料屈服强度随压缩道次增加而增大;沿ND-RD-TD路径压缩时,材料的屈服强度随压缩道次增加先减小后增大。每次压缩后,(0001)基面织构都转到压缩轴附近。TD样品的主要塑性变形机制为孪生,而ND样品的主要塑性变形机制为滑移。多向压缩产生的孪生可以分割细化晶粒,使镁合金强度提高。  相似文献   

6.
为改善镁合金塑性变形能力,在AZ31镁合金的拉伸变形中引入高密度脉冲电流,研究了脉冲电流对合金显微组织及拉伸变形行为的影响规律,并探讨了其机理。结果表明,与未加脉冲电流拉伸相比,施加脉冲电流的AZ31镁合金的变形抗力显著降低,并且随脉冲电流密度的提高,其变形抗力下降的幅度增大。施加脉冲电流的合金在拉伸过程中发生了明显的动态再结晶,再结晶晶粒细小均匀,从而降低了合金的变形抗力。这是由于脉冲电流可以提高原子通量、促进原子扩散、加快小角亚晶向大角度亚晶转变,从而促进了合金的动态再结晶。另一方面,脉冲电流产生的电效应能够改变位错的激活能,使其容易克服滑移面上的障碍,增加位错可动性,从而提高合金塑性变形能力。  相似文献   

7.
采用大应变轧制技术对轧制面与挤压板材ED-TE面分别成90°、45°和0°的AZ31镁合金板材进行加工,研究初始取向对板材显微组织和力学性能的影响。结果表明:孪生诱发动态再结晶是大应变轧制过程中主要的再结晶机制,动态再结晶的发生使合金晶粒细化、力学性能大幅提高。轧制过程中孪生与板材初始取向密切相关,通过改变初始取向可控制板材晶粒细化和强度改善效果。0°轧制试样大应变轧制过程中,大部分晶粒的c轴受压,基面滑移启动难度增加,孪生的作用增强,压缩孪晶密度增大,进而通过孪生诱发动态再结晶获得更为细小的再结晶组织和更为优异的力学性能。压下量为80%时,0°轧制板材的平均晶粒尺寸为5μm,抗拉强度、屈服强度和伸长率分别为311.4 MPa、202.6 MPa和26.9%。  相似文献   

8.
介绍了镁合金在单轴压缩、单轴拉伸、轧制和挤压条件下塑性变形的力学行为及微观组织结构演变规律。简述了镁合金中二次拉伸孪生现象以及各种变形条件下孪生与孪生变体类型的选择规律。基于对镁合金位错滑移、机械孪生及动态回复与再结晶行为的认识,对镁合金力学行为的各向异性、轧制与挤压成型能力的影响规律进行了探讨,强调了初始织构对变形机制、动态再结晶及成型能力的重要影响。最后讨论了析出强化镁合金塑性变形与强韧化机理。  相似文献   

9.
AZ31镁合金变通道角挤压工艺   总被引:2,自引:1,他引:1  
将Φ40mm×50mm的AZ31镁合金圆棒经变通道角挤压(Change channel angular extrusion,CCAE)成厚度约为5mm的板材。通过TEM观察表明,AZ31镁合金的形核机制主要是动态再结晶形核。结果表明,经CCAE变形后,由晶粒的剪切破碎和动态再结晶使得镁合金晶粒明显细化。内角、挤压比、挤压温度和挤压速率等对板材的显微组织结构有重要的影响。在100~450℃温度范围内进行CCAE变形,AZ31镁合金的晶粒尺寸随变形温度的升高而增大。AZ31镁合金经CCAE热变形后,合金的综合力学性能得到改善。  相似文献   

10.
AZ31B镁合金的铸轧组织及其相关变形机制   总被引:1,自引:1,他引:0  
利用金相显微镜、透射电子显微镜对AZ31B镁合金铸轧板坯的微观组织进行研究.结果表明:铸轧AZ31B镁合金板坯主要由α-Mg基体、枝晶间Mg17Al12共晶体和弥散分布的细小析出相组成,铸轧对晶粒的细化效果不明显;板坯在铸轧过程中经历一定的塑性变形,且变形多分布于板材表层;塑性变形在合金中产生大量的位错及位错胞的同时,也产生一定数量的孪晶;经孪生改变晶体取向后的晶粒会在适合的条件下发生滑移变形,孪生和滑移的协同作用使孪晶和位错共存、孪晶中位错的产生和孪晶的变形;铸轧时的塑性变形和高温还导致回复和再结晶的发生.  相似文献   

11.
To explore the coupled effect of temperature T and strain rate_e on the deformation features of AZ31 Mg alloy,mechanical behaviors and microstructural evolutions as well as surface deformation and damage features were systematically examined under uniaxial tension at T spanning from 298 to 523 K and_e from 10-4to 10-2s-1. The increase in T or the decrease in_e leads to the marked decrease in flow stress, the appearance of a stress quasi-plateau after an initially rapid strain hardening, and even to the occurrence of successive strain softening. Correspondingly, the plastic deformation modes of AZ31 Mg alloy transform from the predominant twinning and a limited amount of dislocation slip into the enhanced non-basal slip and the dynamic recrystallization(DRX) together with the weakened twinning. Meanwhile, the cracking modes also change from along grain boundaries(GBs) and at twin boundaries(TBs) or the end of twins into nearby GBs where the DRX has occurred. The appearance of a stress quasi-plateau, the formation of large-sized cracks nearby GBs, and the occurrence of continuous strain softening, are intimately related to the enhancement of the non-basal slip and the DRX.  相似文献   

12.
Using the flow stress curves obtained by Gleeble thermo-mechanical testing, the processing map of extruded magnesium alloy AZ31 was established to analyze the hot workability. Stress exponent and activation energy were calculated to characterize the deformation mechanism. Then, the effects of hot deformation parameters on deformation mechanism,microstructure evolution and hot workability of AZ31 alloy were discussed. With increasing deformation temperature, the operation of non-basal slip systems and full development of dynamic recrystallization(DRX) contribute to effective improvement in hot workability of AZ31 alloy. The influences of strain rate and strain are complex. When temperature exceeds 350 °C, the deformation mechanism is slightly dependent of the strain rate or strain. The dominant mechanism is dislocation cross-slip, which favors DRX nucleation and grain growth and thus leads to good plasticity. At low temperature(below 350 °C), the deformation mechanism is sensitive to strain and strain rate. Both the dominant deformation mechanism and inadequate development of DRX deteriorate the ductility of AZ31 alloy. The flow instability mainly occurs in the vicinity of 250 °C and 1 s-1.  相似文献   

13.
To investigate strain-softening behavior during plastic deformation of an AZ31 Mg alloy, cylindrical specimens were compressed in a rolling direction at 300 °C. Experimental evidence revealed that an inhomogeneous microstructure evolved due to the softening behavior associated with deformation at elevated temperatures. The large grains that reoriented as a result of deformation twinning were free of dynamic recrystallization (DRX). Fine grains nucleated at grain boundaries of grains were deformed by a slip-dominated mechanism, which accommodated the external strain. A visco-plastic self-consistent (VPSC) polycrystal model was used to simulate softening of the flow stress curve and texture evolution during uniaxial compression. A softening scheme was implemented in the polycrystal model to predict the softening phenomenon and texture evolution after the peak stress. The original VPSC model was modified to simulate texture evolution in an AZ31 Mg alloy that exhibited twin-dominated deformation before the peak stress.  相似文献   

14.
通过热压缩实验研究AZ31镁合金挤压杆料在变形温度300、400和500℃,应变速率0.1、0.01和0.001 s^?1条件下的流变行为,基于Arrhenius方程建立流变应力的本构模型,其中激活能Q为132.45 kJ/mol,应变硬化系数n为4.67。依据AZ31镁合金高温变形中的动态再结晶(Dynamic recrystallization,DRX)机理和位错密度演化规律,建立宏观变形?微观组织多尺度耦合的位错密度模型,该模型能够反映热加工过程中的加工硬化、动态回复(Dynamic recovery,DRV)、低角晶界(Low angle grain boundaries,LAGB)和高角晶界(High angle grain boundaries,HAGB)等机制的交互作用。利用ABAQUS的VUSDFLD子程序进行热压缩过程的有限元模拟,获得DRX分数、LAGB和HAGB位错密度的数值模拟结果以及压缩载荷。结果表明:实验载荷与模拟结果基本吻合,本文提出的AZ31镁合金位错密度模型是合理的。  相似文献   

15.
Ce对热轧AZ31镁合金动态再结晶及织构的影响   总被引:2,自引:0,他引:2  
研究了Ce对热轧AZ31合金的动态再结晶过程及织构的影响.结果表明:加入Ce后抑制了AZ31合金中孪生动态再结晶(TDRX)的发彺,还加速了合金动态再结晶进程,同时显著弱化了基面织构.EBSD分析表明,在AZ31-1.0Ce(质量分数,%)合金中,除(0001)基面织构外,还出现了介于(0001)基面和(1010)柱面的取向强度峰值,说明Ce的加入激活了变形时的非基面滑移系.Ce的加入并没有使合金的轴比值降低,相反还略有升高,说明非基面滑移的激活并非晶格结构的变化所致.Ce的加入可能改变了Mg原子之间的结合态以及增加了合金的层错能,使得非基面滑移系被激活,从而导致基面织构弱化.  相似文献   

16.
通过单道次轧制试验,研究了AZ31B挤压镁合金板材在温度为365℃和450℃时的轧制性能,其变形量范围为10%~60%,应变速率为2.1s-1~5.0s-1。通过光学显微镜和扫描电镜观察了轧制变形中的微观组织及其演变。结果表明,在变形的初始阶段,孪生为主要的变形机理和硬化机制。由孪生变形积聚的畸变能和非基滑移的启动,导致了动态再结晶的形核与长大,增大变形速率可以抑制晶粒长大,使平均晶粒尺寸细化到7μm~10μm。365℃温轧制变形使板材晶粒明显细化,温度较高时,晶粒细化作用有限。在同一变形量下,随着轧制温度的升高,板材的晶粒呈长大趋势,在365℃轧制温度下,随着道次变形量的加大,细晶百分含量随之迅速增加。当轧制温度提高到450℃时,晶粒细化有限,晶粒尺寸保持在20μm以上。  相似文献   

17.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

18.
AZ31B镁合金塑性变形动态再结晶的实验研究   总被引:14,自引:1,他引:14  
通过不同应变速率和不同温度下的轴对称压缩试验,研究了AZ31B镁合金塑性变形与动态再结晶的相互依赖关系。研究证实,温度T在200℃~400℃区间、变形程度ε约0.2左右时,开始出现动态再结晶(DRX)现象。随变形程度的增加,DRX晶粒不断增多,材料呈现明显的软化趋势,流动应力下降。当DRX过程完成以后,继续变形,材料又出现硬化行为。为镁合金塑性变形组织演变的定量研究打下了基础。  相似文献   

19.
在220℃的温度条件下,对AZ31B挤压板材进行单道次轧制变形,通过光学显微镜(OM)和扫描电镜(SEM)观察了中温变形AZ31B微观组织演变。结果表明,在中温变形的初始阶段,孪生为主要的变形机制,随变形量的增加,变形畸变能的积聚以及孪晶间的相互作用,导致了动态再结晶的形核与长大,在大的变形量条件下,孪生、形变带和动态再结晶共同作用,使变形得以进行。  相似文献   

20.
Plastic deformation and dynamic recrystallization (DRX) behaviors of magnesium alloy AZ31B during thermal compression and extrusion processes were studied.In addition, effects of deformation temperature and rates on the microstructure and mechanical properties were investigated.The results show that the DRX grains nucleate initially at the primary grain boundaries and the twin boundaries, and the twinning plays an important role in the grain refinement.The DRX grain size depends on the deformation temperature and strain rate The average grain size is only 1 μm when the strain rate is 5 s-1 and temperature is 250 ℃.It is also found that the DRX grain can grow up quickly at the elevated temperature.The microstructure of extruded rods was consisted of tiny equal-axis DRX grains and some elongated grains.The rods extruded slowly have tiny grains and exhibit good mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号