首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
通过复分解法合成了3种基于Mo8O4-26阴离子的四烷基铵钼多金属氧酸盐,并将其作为催化剂,质量分数为30%H2O2溶液为氧化剂、1-己基-3-甲基咪唑四氟硼酸盐离子液体([C6MIM]BF4)为萃取剂,用于柴油的催化氧化脱硫。分别考察了催化剂摩尔分数、反应温度、剂油体积比、反应时间、氧化剂用量等条件对模拟油品脱硫率的影响,确定了最优化反应条件,并将其应用于实际油品的脱硫中。结果表明,在60℃反应条件下,反应时间1h,当催化剂摩尔分数为5%、剂油体积比为1∶5、n(氧化剂)/n(硫化物)为6∶1时,该催化氧化-萃取体系对模拟油品(初始含硫质量分数为1 164μg/g)有较高的脱硫率,一次脱硫率可达95%以上。对抚顺石化公司生产的催化裂化柴油(初始含硫质量分数为850μg/g)一次脱硫率约为92%。  相似文献   

2.
硫酸氢盐离子液体萃取氧化脱硫研究   总被引:1,自引:0,他引:1  
合成了一系列烷基碳链长度不同的1-烷基-3-甲基咪唑硫酸氢盐离子液体,以质量分数为35%的H2O2为氧化剂,考察了萃取时间、剂油体积比、温度等不同条件对模拟油品的脱硫效果,确定了最佳脱硫实验条件;在最佳实验条件下,考察反应体系对FCC汽油、柴油的脱硫效果。结果表明,[C3mim]HSO4离子液体的脱硫效果最好。在V([C3mim]HSO4)/V(H2O2)/V(模型油)-1:1:30,60℃的条件下反应90min,对模拟油品及实际油品均有较高的脱硫率,对模拟油品一次脱硫率为88.38%,对抚顺石化公司石油二厂的FCC柴油的一次脱硫率在80%以上,FCC汽油经一次脱硫后,硫的质量分数下降至10μg/g以下,显示了很高的工业应用前景。  相似文献   

3.
NaY分子筛负载型离子液体在催化裂化汽油脱硫中的应用   总被引:2,自引:0,他引:2  
采用物理浸渍法将[C5mim]HSO4(1-戊基-3-甲基咪唑硫酸氢盐离子液体)负载在分子筛表面,得到分子筛负载型离子液体。采用萃取氧化法,考察了负载型离子液体对催化裂化汽油的脱硫效果。结果表明,分子筛孔道大小对脱硫效果有一定的影响。以NaY分子筛为负载剂,质量分数为35%的H2O2为氧化剂,考察了氧化剂加入体积、萃取时间、剂油体积比等不同条件对催化裂化汽油的脱硫效果。确定了最佳脱硫实验条件为10g负载型咪唑硫酸氢根离子液体,100mL FCC汽油,1mL H2O2,40℃下反应60min后对汽油有较高的脱硫率,一次脱硫率可达94%,初始含硫质量分数为200μg/g的汽油经一次脱硫后含硫质量分数可降至10μg/g以下。反应结束后,通过简单的倾倒使负载型离子液体与汽油分离,负载型离子液体通过回收后可重复使用。  相似文献   

4.
以1,4-丁基磺酸内酯、吡啶和三氟甲基磺酸为原料,采用两步法合成吡啶型离子液体,以离子液体为催化剂,质量分数30%的H2O2为氧化剂,对模拟油进行氧化-萃取脱硫研究。实验结果表明:10mL的模拟油在反应温度为50℃、反应时间为30min、离子液体加入质量为0.6g、H2O2加入体积为0.2mL时,模拟油的脱硫率达到94%。将脱硫后分离出的离子液体经过旋转蒸发仪处理后重复使用,使用5次后模拟油的脱硫率可达到70%。  相似文献   

5.
以双氧水与乙酸为氧化剂,对催化裂化汽油进行氧化脱硫。按正交设计方法考察双氧水的体积分数、双氧水与乙酸的体积比、反应温度及反应时间对脱硫率和收率的影响。结果表明,各因素对脱硫率的影响的大小顺序为:反应温度>双氧水与乙酸的体积比>双氧水的体积分数>反应时间;各因素对收率的影响顺序为:反应温度>反应时间>双氧水与乙酸的体积比>双氧水的体积分数。并得到氧化反应的最佳条件:双氧水的体积分数为5%,双氧水与乙酸的体积比为2∶3,采用两段温度反应,先30℃后50℃,反应时间各为10min。此时,硫的质量分数由112.2μg/g降至7.038μg/g。  相似文献   

6.
采用二次纳米自组装方法制备出具有大孔道的催化剂0106、1227,两种纳米自组装催化剂在30~100 nm孔径分布分别占11%、28%。纳米自组装催化剂具有低堆积密度和高金属含量等特点。在10 mL固定床微型反应器中,以镇海炼化的催化裂化柴油为原料,在温度360℃、压力7 M Pa、氢油体积比为600∶1、体积空速为1.5 h-1条件下,考察了两种纳米自组装催化剂的初活性评价,并与现有工业催化剂作对比。结果表明,两种纳米自组装催化剂0106、1227可使催化裂化柴油的含硫质量分数从12400μg/g分别最低降到483、283μg/g ,最高脱硫率分别为96.10%、97.71%;将含氮质量分数从1507μg/g分别最低降到35.7、14.0μg/g ,最高脱氮率分别为97.63%和99.00%;其最高芳烃饱和率分别为67.99%和68.88%;而参比催化剂仅可使催化裂化柴油的含硫质量分数从12400μg/g最低降到537μg/g ,最高脱硫率为94.57%;将含氮质量分数从1507μg/g最低降到64.6μg/g ,最高脱氮率为95.54%;其最高芳烃饱和率为65.65%。  相似文献   

7.
研究了以N-甲酰吗啉为萃取剂,萃取脱除模型汽油和催化裂化汽油中硫的方法.实验结果表明,对于模型汽油:在萃取温度为65℃,萃取时间为6min时,脱硫率达到96.6%,油收率为88.3%;对于催化裂化汽油:在萃取温度为65℃,单级萃取时间为8min,经过三级萃取后,催化裂化汽油总脱硫率达到81.8%,油收率为95.2%.  相似文献   

8.
氧化-萃取耦合模拟油品深度脱硫研究   总被引:2,自引:0,他引:2  
以分别溶有苯并噻吩(BT)和二苯并噻吩(DBT)的正辛烷溶液为模拟油品(硫含量均为1 540μg/g),以WO3/ZrO2固体超强酸为催化剂,H2O2为氧化剂,N,N-二甲基甲酰胺(DMF)为萃取溶剂,考察氧化-萃取耦合工艺参数对BT和DBT脱除率的影响,确定模拟油品氧化-萃取耦合脱硫的最佳工艺条件,并探讨氧化-萃取耦合脱硫机理。结果表明,在氧化-萃取耦合脱硫优化条件下,即耦合脱硫温度60℃,耦合脱硫时间90 min,氧化剂用量V(油)∶V(H2O2)=33.3∶1,催化剂用量0.02 g/mL油,萃取溶剂用量V(溶剂)∶V(油)=1∶1,此时BT和DBT脱除率分别达到92.40%和97.46%。  相似文献   

9.
在没有任何有机溶剂和卤素的条件下,以质量分数30%的H2O2为氧化剂,Na2WO4·2H2O为催化剂,在酸性离子液体[(CH2)4SO3HMIm]TSO中,将柴油中的噻吩硫氧化为矾类物质,并通过离子液体将其萃取,同时考察了反应温度、反应时间和离子液体用量等因素对氧化脱硫反应的影响,得出最佳反应条件:3mL油样(含硫质量分数为500μg/g),n(离子液体)/n(Na2WO4·2H2O)=40:1,0.7mL双氧水,333K,2h,脱硫率为97.4%。反应结束后,通过简单的倾倒将油样和催化剂分离,重复使用4次,其催化活性基本不变。  相似文献   

10.
以抚顺石油二厂催化裂化汽油为原料,甲酸为催化剂,双氧水为氧化剂进行氧化萃取脱硫实验研究,实验对催化裂化汽油氧化萃取脱硫催化剂进行评价,筛选出甲酸催化剂。对氧化剂体积分数、甲酸与双氧水体积比、反应温度和反应时间等脱硫工艺条件进行考察,得出适合的脱硫工艺条件为:氧化剂的体积分数为6%,甲酸与双氧水的体积比为3.5∶1,反应温度为45℃,反应时间为60 min,在此条件下,催化裂化汽油的脱硫率为76.4%。  相似文献   

11.
随着环境法的日益完善,燃料油的低硫化成了亟待解决的问题.为达到深度脱除油品中硫化物的目的,提出将离子液体应用于萃取一催化氧化脱除油品中噻吩类硫化物.合成了三种酸性的离子液体1-甲基-3-乙基咪唑硫酸氢盐([Emim]HSO4)、1-甲基-3-丁基咪唑硫酸氢盐([-Bmim]HSO4)、1-甲基-3-辛基咪唑硫酸氢盐([-Omim]HSO。)分别用作萃取剂和催化剂,30%H202作为氧化剂,噻吩溶于正辛烷配置成模拟油,用于脱硫实验.考察了反应温度、反应时间、双氧水的加入量等因素对脱硫效果的影响.实验结果表明,脱硫效果的顺序为:[Omim]HSO。〉[-Bmim]HSO。〉[-Emim]HSO4.同时在[-Bmim]HSO4-H2O2体系中,脱硫的最佳条件为:剂油比为1.0,反应温度85℃,反应时间4h,氧硫比为28,脱硫率可达到97.6%.利用硫酸氢盐类的离子液体脱硫可达深度脱硫的标准.  相似文献   

12.
以钛酸正丁酯作为钛源,MCM-41为载体,采用加热回流法合成了TiO2-MCM-41介孔分子筛(n(Si)/n(Ti)=5),并借助XRD、FT-IR、N2吸附-脱附等表征手段研究了吸附剂的结构特性。以催化裂化汽油为油品进行静态脱硫和动态脱硫实验,结合使用固定床技术和色谱-硫化学发光检测(GC-SCD)偶联技术系统考查了吸附剂的选择性吸附脱硫性能及其对不同硫化物的选择性规律。结果表明,TiO2在介孔分子筛MCM-41的内孔壁能均匀分散;TiO2与MCM-41孔道表面的SiO2以Si—O—Ti键连接;MCM-41经负载TiO2后,吸附脱硫性能明显提高;TiO2-MCM-41对FCC汽油中各种硫化物的选择性顺序为:四氢噻吩2-甲基四氢噻吩≈C5硫醚3,4-二甲基噻吩2/3-乙基噻吩2-乙基-5-甲基噻吩噻吩2,5-二甲基噻吩C1-C3硫醇2-甲基噻吩2,3-二甲基噻吩3-甲基噻吩2,4-二甲基噻吩苯并噻吩。  相似文献   

13.
研究了用分散液液微萃取-气质联用法分析测定水样中的三种拟除虫菊酯类农药残留(联苯菊酯、氯氰菊酯和溴氰菊酯)的方法。通过实验确定了当样品体积为5 mL时的最佳萃取条件为:14μL氯苯作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在最佳实验条件下,该方法对水样中三种拟除虫菊酯类农药的富集倍数在318~363之间;线性范围分别在0.05~50μg/L和0.5~100μg/L之间;最低检出限在0.002~0.04μg/L之间;相对标准偏差RSD(n=6)在3.7%~11.2%之间;加标水样的回收率在86.0%~117.0%之间。  相似文献   

14.
铌改性SBA-15催化氧化FCC汽油脱硫   总被引:1,自引:0,他引:1  
以介孔分子筛SBA-15为载体,铌酸为铌源,采用浸渍法制备Nb-SBA-15催化剂。以质量分数为30%的H2O2为氧化剂,Nb-SBA-15为催化剂,N,N-二甲基甲酰胺(DMF)为萃取剂对催化裂化汽油进行了脱硫实验。结果表明:在温度60℃、反应时间60min、催化剂用量为FCC汽油质量的5%、氧化剂与含硫化合物物质的量比为3∶1、萃取剂与FCC汽油的体积比为1.0时,催化裂化汽油的脱硫率可达到95.4%,收率为83.8%。  相似文献   

15.
酚类化合物对FCC汽油储存安定性的影响   总被引:3,自引:0,他引:3  
通过对催化裂化(FCC)汽油组成、诱导期、吸光度等性质指标的跟踪测试,分析了酚类化合物对 FCC 汽油安定性的影响规律。结果表明,酚类化合物既是抗氧剂、又是 FCC汽油生胶变色的酸性催化剂,酚含量越大的汽油诱导期越长、且油品变色也越快。含酚质量分数大于 200μg/ g时,汽油诱导期随着二烯值的增大而降低,储存吸光度随着二烯值、碱性氮含量的增大而增加;含酚质量分数小于120μg/g时,汽油颜色稳定、诱导期短,二烯值在0 .7~2 .6 g(I 2 ) / (100 g)的各种FCC汽油的储存吸光度、诱导期变化不大。可通过优化催化原料、控制预碱洗深度、优化汽油调合、添加抗氧防胶剂等措施调节酚含量、提高汽油的储存安定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号