首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 468 毫秒
1.
为研究汛末蓄水过程中,三峡水库干流对支流水体水流、水环境因子影响特征及作用机制,从2007年9月25日开始对三峡水库蓄水过程中香溪河库湾水流速度和水环境因子进行持续监测分析。结果表明2007年秋季三峡水库汛末蓄水过程中,水库干流依次以底部异重流、中层异重流、表层异重流形式倒灌进入库湾,使得香溪河库湾水体在深度方向具有典型的分层流特征,异重流现象是由水库干流与库湾水体之间的温度差和浊度差造成的。2007年秋季香溪河库湾暴发了一定程度的水华,倒灌异重流使得库湾表层水流流速增大,并将库湾表层浮游藻类演进式输运出河口从而降低库湾藻类生物量是本次异重流影响秋季水华的重要机制。  相似文献   

2.
汛末蓄水期香溪河库湾倒灌异重流现象及其对水华的影响   总被引:10,自引:2,他引:8  
为研究三峡水库汛末蓄水过程中,干流对支流水体水流、水环境因子的影响特征及其作用机制,从2007年9月25日开始对三峡水库蓄水过程中香溪河库湾水流速度和水环境因子进行持续监测分析。结果表明,2007年秋季三峡水库汛末蓄水过程中,水库干流水体依次以底部异重流、中层异重流、表层异重流形式倒灌进入库湾,使得香溪河库湾水体在深度方向具有典型的分层流特征,异重流现象是由水库干流与库湾水体之间的温度差和浊度差造成的。2007年秋季香溪河库湾暴发了一定程度的水华,倒灌异重流使得库湾表层水流流速增大,并将库湾表层浮游藻类演进式输运出河口从而降低库湾藻类生物量是本次异重流影响秋季水华的重要机制。  相似文献   

3.
三峡水库蓄水后支流库湾水体的水动力条件发生变化,水温在垂向上的分布也呈现出了不同模式。为了分析不同类型的倒灌异重流条件下水体的水温分布情况,对香溪河库湾不同断面的水温进行原位监测,并构建库湾水体的水温水动力数学模型(CE-QUAL-W2)。研究结果表明:水库正常运行的不同时期,香溪河库湾水体的主要水动力条件和水温分布结构均不同,在水库运行时的泄水期,库湾水体水动力主要为表层倒灌异重流,水温呈现传统的分布模式;在水库汛期低水位运行时,库湾水体水动力主要为中层倒灌异重流,水温呈“双混斜”式分布;在水库蓄水期,库湾水体水动力主要为底部倒灌异重流,水温呈“半U”型分布。研究成果可为揭示香溪河水流水温特性、营养盐迁移及水华预测预报提供相关的理论支持和技术支撑。  相似文献   

4.
三峡水库支流水华机理及其调控技术研究进展   总被引:13,自引:1,他引:12  
三峡水库自2003年蓄水以来,水库干支流水环境状况及支流水华问题已成为广泛关注的问题,国内外不少科研单位及学者对此进行了大量的研究。本文在介绍三峡水库蓄水以来水库水质状态及支流水华情势的基础上,系统总结了关于三峡水库干支流水动力特征及其环境效应、水华机理及其调控措施的研究发现,并提出了有待进一步研究的内容。主要研究发现包括:(1)三峡水库蓄水后支流库湾普遍存在分层异重流现象,产生的原因是干支流温度差及泥沙浓度差引起的水体密度差,其中水体温度差是主要因素;(2)在分层异重流的驱动下,支流库湾水体呈现"双混斜"及"半U"型特殊水体分层模式,支流库湾营养盐也主要来自于水库干流倒灌;(3)流速变缓只是支流暴发水华的表观原因,分层异重流驱动下的混合层(Zm)与临界层(ZCr)的关系变化才是决定水华生消的关键;(4)水库水位升降可通过影响分层异重流的形态、改变支流水体分层状态进而调控支流水华的生消过程,基于此提出了防控支流水华的"潮汐式"生态调度方法。如何将上述新发现上升为具有三峡水库特色的系统理论与方法,实现支流水华的精准预测预报,开展能够协调水库传统效益和防控支流水华等生态效益的三峡及上游梯级水库群联合多目标优化调度实践,应是今后进一步努力的方向。  相似文献   

5.
针对三峡库区蓄水后普遍存在的干流水体倒灌支流库湾的现象,为探究干支流水交换过程中的水动力特征,通过逐月(2012年9月至2013年7月)实地观测获取三峡库区中部典型支流草堂河库湾水动力参数及水体温度、浊度等数据,分析了水库运行各期干流与库湾的水交换情况及其对库区水环境的影响。结果表明:由于温度差异、干流惯性作用以及支流特殊地形等因素的影响,草堂河河口存在明显的双向水流结构,水库运行各期干支流交界面进出水体分布差异显著;特殊的河流走向使得全年多数月份草堂河与干流有效交换量高于其他典型支流;干流水体全年均能倒灌至库湾尾部,水库高水位运行期进出水体在河口呈上下分层结构且连续性较好,低水位运行期则以左右环流为主且连续性较差。  相似文献   

6.
为了解三峡水库库首2003—2018年的水温变化特征及其对生态环境的影响,基于庙河断面实测资料,采用LSTM-Logistic模型模拟分析了库首多年水温结构特性,并探讨了其变化对库区支流库湾水华的影响和对坝下鱼类产卵水温的影响。结果表明:LSTM-Logistic模型能较好地适用于三峡水库,准确地模拟水温的逐日变化过程;2006—2013年,三峡水库库首每年4—6月均出现了水温分层现象,从2014年开始,水温垂向差异变小,水温不分层,且春季、秋季和冬季水温升高,下泄水温进一步平坦化;三峡水库库首水温长期变暖的趋势,会使支流库湾倒灌异重流潜入深度上移,从而改变异重流倒灌形式,降低库湾水华风险;梯级水库蓄水缓解了春季下泄低温水的不利影响,但秋冬季水温的升高对中华鲟繁殖造成了进一步威胁。  相似文献   

7.
程瑶  蒋蓉  王雨春  叶振亚 《人民长江》2018,49(20):13-18
定量分析三峡水库支流库湾中水体组成,研究支流库湾水循环过程,有助于分析支流库湾的环境问题。对三峡水库内的草堂河及其毗邻干流进行了连续1 a的观测,分析了水体中氢氧同位素特征,阐述了在干支流相互作用下,三峡水库支流库湾的水团来源及其组成,探讨了三峡水库蓄水后支流库湾水循环的变化。研究表明:长江干流和支流库湾中δD/δ~(18)O与区域降水线十分接近,表明其水团主要来源为大气降水;同时长江和支流库湾中的氘盈余与建库前有明显不同,说明三峡水库蓄水之后长江干流和支流库湾水体组分发生了一定改变;支流库湾中水体混合比存在明显的时空变化,长江干流水团占的比例为76. 9%~99%。  相似文献   

8.
通过对三峡库区中部典型支流梅溪河库湾水动力参数及水体温度、浊度数据进行分析,研究水库运行各时期梅溪河河口干支流界面水流特性,探讨其影响因素以及水交换对库湾的影响。结果表明:梅溪河河口双向水流特征明显,在温差异重流、干流惯性作用以及库区水位变动等因素影响下,干支流界面水流强度、进出水体间界面结构及形态在不同运行期有显著差异;由于双向水流结构的存在,尽管梅溪河河口干支流界面净流量较小(多小于100 m~3/s),但是干支流水体的交换量相对显著,介于314.17~535.26 m~3/s之间,可达净流量的4~40倍;在净流量最小的低水位运行期,干流倒灌水体基本能到达支流库湾常年回水区的末端。  相似文献   

9.
三峡库区大宁河库湾水体混合过程中的营养盐行为   总被引:1,自引:0,他引:1  
为研究不同水文期不同水体混合模式下大宁河库湾的营养盐行为,基于2012年大宁河的现场监测数据,分析营养盐时空分布特征,采用箱式模型对不同水文期营养盐的收支量进行计算,以期为制定大宁河富营养化和水华控制策略提供理论依据。试验及计算结果表明:在泄水期,干流水体通过表层逆向进入库湾,而支流水体通过底层潜流向河口运输;在汛限期和蓄水期,干流水体主要通过中上层逆向进入库湾,而支流水体通过底层潜流向河口运输。干流对支流的逆向顶托作用常年存在,泄水期、汛限期、蓄水期干流对支流的贡献率分别为70.38%、28.42%和59.56%。在水体混合过程中,库湾上游来水以及干流顶托来水的混合作用是控制库湾水化学组成的主要物理因素。  相似文献   

10.
为研究水库支流异重流入汇问题,借助水槽试验,分析了支流异重流入汇干流前后水流运动状态、异重流头部特点以及流速、含沙量变化,研究了不同影响因素条件下倒灌干流异重流浑液面、异重流头部流速以及倒灌长度的变化特点。研究表明:随着流量、含沙量及入汇角增大,异重流倒灌干流厚度、头部流速以及倒灌距离增大;随干流比降增大,异重流倒灌干流厚度、头部流速以及倒灌距离减小;流量、入汇角及比降对倒灌影响较大,而含沙量变化对倒灌影响较小。  相似文献   

11.
三峡库区支流中水体的垂向掺混对于藻类生长的影响   总被引:2,自引:0,他引:2  
三峡水库蓄水之后库区支流水华问题给当地生态环境造成了较大影响,也引起了广泛的关注和重视,然而针对这一问题尚未取得很好的解释和解决方案。本文采用EFDC模型对于2008年坝前库区干支流的三维水动力和水质进行了数值模拟,并从水体垂向掺混的角度分析支流的水华现象。模拟结果成功再现了香溪河库湾中的温度分层和异重流现象,流场、温度场的计算值和实测值吻合较好。统计结果表明:长江干支流水动力特性的差异显著,干支流垂向紊动黏性系数、垂向紊动扩散系数沿垂线分布呈现出不同的形态,且长江干流的垂向掺混强度明显高于香溪河。同时,叶绿素浓度与垂向紊动扩散系数呈显著的负相关关系,随着水体垂向紊动扩散系数的增加,叶绿素浓度逐渐降低,这一规律的发现可为采用物理方法防治三峡库区支流水华打下基础。  相似文献   

12.
针对三峡水库蓄水运行后支流库湾春季水华频现问题,利用CE-QUAL-W2模型建立了香溪河-三峡库区整体立面二维水动力数学模型,对三峡水电站不同开机数量和春季不同水文条件下的香溪河库湾流速进行了数值模拟。计算结果表明:香溪河上游来流量较小时,滞留区表层流速小于香溪河库湾水华的临界流速0.05 m/s;而香溪河上游来流量增大到合适的值时,香溪河滞留区表层流速可大于0.05 m/s;仅利用三峡电站小幅度日调节对支流库湾流速的改善效果十分有限,而利用干支流水库对香溪河库湾流速的联合调控效果明显,可控制三峡水库香溪河库湾水华爆发。  相似文献   

13.
三峡电站日调度驱动的重力波对其支流动力过程造成显著影响,其中的高频水流波动会显著影响支流库湾的物质、能量等垂向扩散和输运过程,进而影响水华暴发等环境问题。基于三峡水库香溪河支流2021年蓄水期末的水动力及水温垂向结构监测数据,分析了三峡电站日调度驱动的支流库湾高频振荡对水温结构的影响。研究发现,三峡出库流量日波动驱动支流水位也呈日波动和高频波动特征,其中水位日波动振幅约0.3~0.5 m,高频水位波幅约0.04 m。库湾底层水温高频波动比中上层更加明显,与香溪河库湾水深从河口向上游逐渐变浅有关系。支流近底水温波动功率谱分析显示,香溪河湍流耗散速率(6.5×10-7 W/kg)明显高出一般水库的近底耗散率,表明水库调度驱动的水体高频波动导致较强的湍流发育和耗散。  相似文献   

14.
为研究三峡水库汛期调度方式优化问题,以实测资料为基础,对三峡水库蓄水运用以来入出库沙量特性变化进行了分析,主要从泥沙角度对三峡水库采用汛期“蓄清排浑”动态运用方式进行了初步探讨。研究结果表明:三峡水库蓄水运用后汛期入库沙量大幅减小,上游溪洛渡和向家坝水库蓄水运用后三峡水库汛期6—9月份含沙量已经开始小于论证阶段5月份和10月份的含沙量;三峡水库主汛期出库沙量占年出库沙量的90%以上,且汛期出库沙量主要集中在1~2次大的出库沙峰过程中;近期三峡水库汛期采用“蓄清排浑”动态运用的泥沙调度方式,泥沙淤积可许。研究成果可为三峡水库汛期优化调度提供参考。  相似文献   

15.
基于深圳湾、珠江口、水质净化厂尾水、面源与截排溢流水体等水质数据,系统分析深圳湾水质时空分布特征及其污染物来源。结果表明:深圳湾现状水质不达标,关键污染因子为无机氮(DIN)和活性磷酸盐(DIP);雨季水质普遍劣于旱季,内湾水质明显劣于外湾。污染物入湾途径包括:6个入湾河口(后海河、大沙河、小沙河、凤塘河、新洲河、深圳河)、1个污水排放口(福田水质净化厂尾水排放口)、34个雨水排放口和深圳湾湾口。经过旱季污水收集、尾水提标改造等水环境治理措施后,深圳湾主要污染源为面源与截排溢流污染,其入湾氮、磷营养盐浓度可达地表水V类标准,是深圳湾现状水质的5~15倍,雨季面源与截排溢流水体的氮、磷入湾总负荷达到76.2 t和283.8 t,将对已无氮磷营养盐剩余容量的深圳湾水质造成严重冲击。  相似文献   

16.
Deep Bay (DB) is a semi-enclosed bay that opens to the middle part of the Pearl River Estuary (PRE), the largest estuarine wetland area in the world. Like many rivers around the world, the Pearl River has in recent years experienced more frequent and more severe flow variations. It was hypothesized that Pearl River flow variation would affect the environment of DB, where locates large area of Ramsar wetlands of international importance. The anthropogenic factor of land reclamation was also hypothesized to alter the Pearl River flow and thus affect DB and the PRE environment. Simulations were performed to model water and salt transport processes under different scenarios of Pearl River flow variation and land reclamation. It was found that the Pearl River had a strong governing role on the hydrodynamics of DB, especially in the wet season. The simulation results indicated that in the wet season, the waters at the mouth of DB and DB as a whole were respectively composed of 50–80% and 31–37% of water discharged from the Pearl River. Moreover, it was shown that a 20% increase in Pearl River flow in the wet season would result in 0.2% and 3.3% more Pearl River water flushing into the bay before and after reclamation, respectively. Therefore, reclamation is predicted to stress the coastal ecosystem in DB, as it will enhance the intrusion of pollutants from the Pearl River into the bay head. However, it would benefit the removal and dilution of pollutants directly discharged into the bay from the Shenzhen River. Our results confirm that the hydrodynamic interconnection of bay and estuary in an estuarine system is complex, and should be carefully examined when assessing the environmental impacts of climate change and anthropogenic engineering projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号