共查询到19条相似文献,搜索用时 73 毫秒
1.
2.
基于粒子群优化支持向量机的变压器故障诊断 总被引:3,自引:4,他引:3
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 相似文献
3.
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 相似文献
4.
在电力网络中变压器是非常重要的电气设备,对电力网络的正常运行具有非常重要的作用,利用变压器油中溶解气体组成的分析,对电力变压器运行中的故障进行诊断具有重要意义。采用支持向量机(SVM)算法分析变压器油中溶解气体组成并进行故障诊断,选取了SVM核函数及最优参数并构造了OVR-SVM多类分类器。最后,基于DGA数据的实验结果显示,这种故障诊断方法具有很好的效果。 相似文献
5.
文中提出一种基于支持向量机的变压器故障多层次诊断及定位模型.其基本思路是将变压器的油色谱信息和电气实验特征结合,再通过支持向量机对其进行学习分类,形成分层次、可靠、开放的变压器故障多层次诊断模型,并逐步对变压器的故障进行定位.充分利用支持向量机在解决小样本、非线性及高维模式识别问题等方面特有的优势,解决变压器故障信息存在的冗余、不确定、小样本等问题.实验证明,将支持向量机应用到变压器的故障诊断及定位中是合理可行的. 相似文献
6.
变压器是电网最为核心的设备,绕组变形是变压器主要的故障类型之一,频率响应分析法(frequency response analysis, FRA)是目前广泛应用的绕组变形检测方法。为提高绕组变形分类诊断的性能,文中提出基于粒子群算法优化支持向量机(particle swarm optimization-support vector machine, PSO-SVM)的变压器绕组变形分类方法,采用数学统计方法提取频率响应曲线的特征参量,并输入到支持向量机模型进行训练,利用粒子群算法优化支持向量机模型参数,使其能够有效区分不同的绕组故障类型。为证明文中方法在变压器绕组故障诊断方面的有效性,在一台特制模型变压器上进行了一系列故障模拟实验。数据处理结果表明,训练后的支持向量模型表现出了极高的性能,并且,相比传统的网格搜索参数优化算法,粒子群算法优化的支持向量机可以显著提高变压器绕组变形故障的分类性能。 相似文献
7.
8.
油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量,选用了径向基核,使用了一对一的多分类算法,充分发挥了支持向量机具有较高泛化能力的优势。通过大量的实例分析,并将诊断结果与IEC三比值法、改良三比值法和BP神经网络的诊断结果相比较,表明基于径向基核的最小二乘支持向量机在变压器故障诊断中具有更高的准确率。 相似文献
9.
10.
针对变压器故障诊断问题,提出了基于粗糙集和支持向量机理论的变压器故障诊断方法。该算法利用粗糙集技术对变压器知识进行属性约简,并通过属性表获得故障最简决策表作为支持向量机的输入,与此同时,利用粒子群优化算法获得支持向量机的最优参数设置。实验结果表明,该诊断方法分类性能良好、可靠性高且有效可行。 相似文献
11.
12.
应用支持向量机的变压器故障组合预测 总被引:5,自引:0,他引:5
对变压器油中溶解气体进行预测有助于及时预测变压器的故障。提出一个基于支持向量机(support vector machine,SVM)的变压器故障组合预测模型及其求解步骤。在预测过程中,首先利用多个单一预测方法如线性模型、指数模型、乘幂模型、非等间隔灰色GM(1,1)模型和非等间隔灰色Verhulst模型构成预测模型群,对原始油中溶解气体数据进行拟合。然后,将预测模型群的拟合结果作为支持向量机回归模型的输入进行2次预测,形成变权重的组合预测。该文对基于SVM的组合预测过程和参数计算进行了详细地探讨。通过2个实例证明了该文提出的组合预测模型能较好地平衡拟合和外推,在某种程度上解决了传统方法拟合优而外推差的问题。此外,通过与多种预测方法进行比较,基于支持向量机的变压器故障组合预测模型的预测精度明显优于单一预测模型和其它的组合预测模型。 相似文献
13.
14.
组合核相关向量机可以融合多个特征空间,输出变压器隶属于各种状态的概率。将代价敏感机制融入组合核相关向量机,构建了代价敏感组合核相关向量机,该算法以误诊断代价最小为目标,按贝叶斯风险理论预测样本的故障类别,克服了传统诊断方法未考虑误诊断代价差异的问题。针对代价敏感组合核相关向量机核函数参数选取需人为设定的问题,采用K折交叉验证和粒子群算法相结合的方法寻优核函数参数。基于油中溶解气体分析(dissolved gas analysis,DGA)数据的诊断实例表明,与BP神经网络,支持向量机及组合核相关向量机算法相比,代价敏感组合核相关向量机不仅具有较高的诊断正确率,而且具有较低的误诊断代价。 相似文献
15.
针对变压器故障诊断中模型训练时间长,容易过拟合,噪声敏感等问题,本文提出一种深度降噪极限学习机变压器故障诊断方法。将极限学习机与降噪自编码器结合构建降噪自编码极限学习机,并将其堆叠构建深度降噪极限学习机模型进行特征提取,将提取的特征输入常规极限学习机进行分类,整体构成深度降噪极限学习机分类算法。该算法能有效应对电压器油中溶解气体分析数据中的噪声且具有非常快的学习速度。仿真实验结果表明,相比于传统BP神经网络,本文方法有更高的故障诊断正确率和更短的训练时间,是一种有效的变压器故障诊断方法。 相似文献
16.
一种基于多分类概率输出的变压器故障诊断方法 总被引:1,自引:0,他引:1
多分类概率输出方法可用于变压器故障诊断,其分类效果较好并能提供概率信息。针对现有基于支持向量机(SVM)的诊断方法在特征不明显条件下有误分类的情况,提出了一种基于多分类概率输出的变压器故障诊断方法。此方法引入Sigmoid函数将SVM决策函数输出映射为二分类概率输出,然后综合多个二分类概率输出结果,求解一个凸二次规划问题实现多分类概率输出。此方法可以得到发生不同类型故障的可能性,即故障类别概率,进一步分析后给出诊断结论。算例分析表明,此方法在继承了SVM故障诊断方法优点的基础上,提供了概率信息,对现有SVM方法误诊断样本也能给出可能存在的故障,弥补了现有SVM方法在变压器故障特征不明显条件下的不足。 相似文献
17.
基于粗糙集与支持向量机的变压器故障诊断法 总被引:4,自引:4,他引:4
为了及时监测变压器潜伏性故障和准确诊断故障,提出了一种基于粗糙集与支持向量机相结合的电力变压器故障诊断的新方法。该法应用粗糙集理论将专家知识简化,获得简约诊断规则并对变压器进行粗诊断,然后以支持向量机准确的二类分类功能进行准确故障诊断。该方法实现了两种智能算法的有效互补,拥有粗糙集理论的处理不完备信息能力、简单快速以及支持向量机准确的二类分类功能,有效弥补了单一算法的不足,提高了故障诊断的快捷性和准确性,且降低了样本训练时间和诊断的复杂度。实验结果与改进的IEC三比值法比较,表明该方法有效、可行,具有较高的诊断准确率。 相似文献
18.
最小二乘支持向量机多分类法的变压器故障诊断 总被引:9,自引:0,他引:9
为了提高变压器故障诊断正判率,提出了一种基于小样本的最小二乘支持向量机(LS-SVM)多分类电力变压器油中气体分析(DGA)法,即通过相关统计分析和数据的预处理,选择变压油中典型气体作为LS-SVM的输入,然后利用典型故障气体的体积分数在高维空间的分布特性诊断变压器故障类型。该法在小样本条件下可获得最优解,泛化能力很好,且没有传统支持向量机只能分两类的缺陷,很好地解决了变压器多种故障共存的实际情况。试验表明,该方法分类效果很好,可较好地解决变压器放电和过热共存时故障的难分辨问题,故障类型的正判率较高。 相似文献
19.
变压器油中溶解气体的体积分数是进行变压器绝缘故障诊断的重要依据,对变压器油中溶解气体进行预测有助于及时预测变压器的故障。将灰色预测方法与支持向量机相结合,通过使用对原始数列进行一次累加生成的处理方法,以提取数列所具有的深层规律特征,建立了基于灰色最小二乘支持向量机的变压器油中溶解气体预测模型,并对最小二乘支持向量机参数的选取进行了优化,最终通过实例与BPNN、灰色模型预测结果相比较,验证了该模型的准确性和有效性。 相似文献