首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2)通过异质原子掺杂改善纳米碳材料的电化学性能;(3)将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来...  相似文献   

2.
重点介绍了生物质碳材料各种维度的碳结构,综述了生物质碳材料的制备方法及其优缺点,对生物质碳材料在超级电容器和离子电池两个方向的应用与开发现状进行了归纳,分析了原子掺杂对生物质碳材料结构与性能的改良,并就原子掺杂的种类进行了总结。最后,对生物质碳材料的发展方向与应用前景进行了展望。  相似文献   

3.
太阳能光热蒸发是实现水体处理的一种高效绿色技术,近年来受到了研究者们的密切关注。碳材料因具有宽光谱吸收能力和良好的光热性能,被认为是理想的太阳能光热转换材料。首先概述了光热转换碳材料及其光热转换原理,简要阐述了基于碳材料的太阳能蒸发系统的结构设计;重点介绍了应用于水处理领域的碳材料的制备方法;总结了光热转换碳材料在海水淡化、废水处理的应用现状;对水处理用光热转换碳材料的未来研究方向及发展进行了展望。可为光热转换碳材料在水处理领域应用的研究和发展提供一定的策略支撑。  相似文献   

4.
综述了新型碳材料作为直接甲醇燃料电池(DMFC)催化剂载体的研究进展,包括纳米碳材料(如碳纳米管、碳纳米纤维、碳纳米盘、富勒烯碳纳米簇等)和介孔碳材料.新型碳材料负载催化剂的活性都高于传统炭黑负载催化剂,将在DMFC中得到广泛应用.  相似文献   

5.
碳系电磁屏蔽材料是屏蔽材料的重要组成部分.主要介绍了炭黑、石墨、碳纤维、碳纳米管及其他碳系电磁屏蔽材料的研究进展,着重阐述了这些碳系电磁屏蔽材料的优缺点和改性方法,并指出复合化和纳米化将是碳系电磁屏蔽材料今后发展的重点.  相似文献   

6.
碳材料是自然界中与人类关系最为密切的重要材料之一,伴随着纳米科技的发展,具有纳米结构的功能碳材料的研究逐渐深入,已经出现了石墨烯、碳纳米管等性能优异的纳米碳材料。纳米碳材料具有机械强度高、导热导电能力强等诸多优点以及环境友好特性,能够满足绿色化学和可持续性发展的要求,因而其在复合材料中的应用成为相关领域的研究热点。纳米碳材料的引入可以显著提高复合材料的性能,并且还可以赋予材料新的性能,其在功能复合材料方面有良好的应用前景。然而,由于纳米碳材料自身的结构特点,其在溶剂和聚合物基体中的分散性、相容性和稳定性较差,这一直阻碍着其性能在复合材料中的发挥,甚至可能导致材料的整体性能降低。因此,提高纳米碳材料的分散能力和使用性能一直是研究的难点和热点。通过化学的方法提高纳米碳材料的分散能力,操作过程复杂,生产成本增加,且化学品试剂大多具有很强的毒性。近年来,纳米碳材料的辐射改性受到各界广泛的重视,利用辐射技术制备和官能化修饰纳米碳材料,可以显著提高纳米碳材料的分散能力和与基体的相容性。辐射刻蚀和还原技术用于纳米碳材料的制备时,可对其结构进行设计,例如辐射制备短切碳纳米管,降低了碳纳米管的长度,可有效提高分散能力。利用高能射线还可将氧化石墨烯进行还原,提供简单高效制备石墨烯的新方法和新思路。辐射接枝可用于纳米碳材料的表面修饰,例如在碳纳米管或石墨烯表面接枝聚合含碳碳双键的酯和芳香类聚合物,提高了纳米碳材料在溶剂和聚合物基体中的分散性能,有助于制备各种高性能功能材料。本文综述了近年来辐射技术在碳纳米管、氧化石墨烯及碳纳米纤维等材料改性及其应用方面的研究进展,总结了这三种纳米碳材料的优异性能及其复合材料在生物医药、能源、智能材料等领域的最新研究进展,分析了辐射改性纳米碳材料的优势,并对今后辐射技术和纳米碳材料相结合的研究方向进行了展望。随着对纳米碳材料辐射改性的研究和产业化的不断深入,分散性能优异的纳米碳材料有望实现大规模低成本的连续批量生产,未来在功能化和高性能化复合材料等领域的应用也将会更加广阔。  相似文献   

7.
碳基吸波材料的研究进展   总被引:6,自引:2,他引:4  
传统吸波材料由于密度大、吸收频带窄使其应用受到限制,新型吸波材料的探索和研究将会成为吸波材料领域的主要发展方向。碳材料以其独特的物理化学性能一直备受关注。先进碳材料已成为新材料领域的发展重点。碳材料是最早用来吸收电磁波的材料之一,近年来碳基吸波材料的性能不断提高并应用于更多领域。介绍了碳基(石墨、炭黑、碳纤维、碳纳米管)吸波材料的性能,分析了各种吸波材料的主要特点,总结了近年来国内外碳基吸波材料的研究进展及发展趋势,展望了碳基吸波材料的发展前景。  相似文献   

8.
由于能源资源短缺和环境问题,开发新型储能材料迫在眉睫。锂离子电池应用广泛,但其在地壳中的含量较低,限制了它的发展。钠与锂具有相似的化学性质,可以替代锂成为新一代储能材料。碳基储钠负极材料分为天然石墨、石墨烯、软碳材料和硬碳材料。重点介绍了这些碳材料的定义、存在的问题和解决方案,对碳材料的改性及其在钠离子电池中的应用有一定的指导意义。  相似文献   

9.
金属合金及碳材料储氢的研究进展   总被引:1,自引:1,他引:0  
论述了金属合金和碳材料的储氢机理、吸放氢量和动力学性能;探讨了活性金属Ni、Pd、Li和K对碳材料储氢的催化性能和金属Mg与多壁纳米碳管、碳纳米纤维、高比表面积活性炭、无烟煤和纳米石墨等碳材料复合储氢的性能及机理;指出了储氢材料应该向Li、Na、Mg、Al、B等轻元素和无烟煤、石墨等储量大、赋存广、成本低的碳材料方向发展.  相似文献   

10.
冯晨辰  吴爱民  黄昊 《材料导报》2016,30(1):143-149
多孔碳材料作为双电层电容器的主要电极材料,已成功应用于商业化超级电容器。但作为电极材料,纯碳材料表面疏水、内阻较大、电容较低等缺点使其进一步发展受到制约。近年来,随着超级电容器的迅速发展,氮掺杂多孔碳材料作为其电极材料引起研究人员的广泛关注,并采用不同的制备方法成功合成了一系列结构不同、性能优异的氮掺杂碳材料。基于超级电容器氮掺杂多孔碳电极材料的最新研究进展,首先介绍了氮在碳材料中的基本存在形式及对碳电极材料性能的影响,然后重点评述了氮掺杂碳电极材料的制备,最后总结了超级电容器氮掺杂碳材料的发展趋势。  相似文献   

11.
综述了近年来储氢材料的研究进展,介绍了储氢材料应用并指出储氢材料发展趋势.  相似文献   

12.
电化学电容器碳基电极材料研究进展   总被引:4,自引:1,他引:3  
综述了应用于电化学电容器的各种新型碳材料(活性碳粉、碳气凝胶、碳纳米管)的制备方法、材料特性、电化学性能,提出了在选择电容器碳基电极时需要遵循的几项原则。  相似文献   

13.
储氢材料的发展概况   总被引:3,自引:1,他引:2  
主要介绍了目前研究比较多的两系列储氢材料--金属合金系列和碳系列,特别是有关金属合金系列储氢材料的储氢原理、设计和合成以及表面修饰等方面的知识,同时对碳系列储氢材料的种类、合成等也做了简要的叙述,并提出储氢材料的最终发展方向将是走向复合型的储氢材料.  相似文献   

14.
Carbonaceous materials have attracted immense interest as anode materials for Na‐ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na‐storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O‐dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g?1 at 100 mA g?1 after 100 cycles and retaining a capacity of 240 mAh g?1 at 2 A g?1 after 2000 cycles. The NOC composite with 3D well‐defined porosity and N,O‐dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O‐dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells.  相似文献   

15.
相变储能混凝土的研究   总被引:2,自引:0,他引:2  
相变储能技术对能源的开发和合理利用具有重要意义,在太阳能利用、工业余热回收等方面有着显著的优点.相变储能材料能将暂时不用的能量储存起来,到需要时再将其释放,这就可以缓解能量供与求之间的矛盾,节约了能源.通过把制备的活性炭储能骨料和石墨导热功能基元材料加入混凝土中,取代其中的卵石和河砂,用普通混凝土的制备技术制备相变储能混凝土.实验结果表明,活性炭储能骨料的加入使混凝土中储存了大量的相变材料,制得的储能混凝土的比热容明显高于普通混凝土,石墨提高了其导热系数,但活性炭储能骨料和石墨的加入导致制品的抗压强度下降剧烈.红外光谱证实储能混凝土中的相变材料没有同其它物质反应,因此具有良好的储能效果.  相似文献   

16.
A novel strategy for maximizing the lithium storage capacity of carbon materials is reported. To redesign the interior structure, a large amount of Li, 4 wt%, is doped into the carbon during its synthesis. The Li‐doped carbon is subsequently annealed, during which the diffusion of Li induces a disordered structure, thereby generating many nanocavities. The diffused Li atoms aggregate into a superdense state within the carbon structure; when the Li agglomerates escape from the carbon during the delithiation process, new void spaces are created at their location. Thus, the interior of carbon is evacuated to form a new structure capable of storing a large amount of Li, realizing a high reversible capacity during charging. At a rate of 1 C, the average reversible capacity of the material is three times higher than that of commercial graphite, with a stable cycling performance over 300 cycles. This is a remarkably improved Li storage performance for pure carbon, without the need for the silicon, tin, or transition metal oxide, that are becoming popular as next‐generation materials. Therefore, this novel strategy can potentially aid in the design of high‐performance materials via better carbon material design and combinations with other types of materials.  相似文献   

17.
用炭素材料吸附贮藏甲烷和氢气   总被引:2,自引:0,他引:2  
在活性碳纤维 (ACF)表面分散MgO等金属氧化物 ,或者先吸附一些水蒸汽都可以使ACF吸附的CH4 量有很大的提高 ,而用纳米碳纤维等新的炭素材料吸附H2 ,则可以得到超常的吸附量 ,这些新技术、新材料的使用为炭素材料吸附贮藏CH4 和H2 展现了很好的前景。  相似文献   

18.
In this study, the capacity of hydrogen storage was evaluated by using electrospun activated carbon fibers prepared by electrospinning and chemical activation based on the comparison with other carbon materials such as active carbon, single walled carbon nanotube, and graphite. For an improved hydrogen storage system, the optimized conditions of carbon materials were investigated with studying their specific surface area, pore volume, size, and shape. The hydrogen adsorption capacity of chemically activated electrospun carbon fiber itself is better than that of other porous carbon materials. This is attributed to the optimized pore structure of electrospun activated carbon fibers that might provide better sites for hydrogen adsorption than other carbon materials.  相似文献   

19.
Electrochemical sodium storage and capture are considered an attractive technology owing to the natural abundance, low cost, safety, and cleanness of sodium, and the higher efficiency of the electrochemical system compared to fossil‐fuel‐based counterparts. Considering that the sodium‐ion chemistry often largely deviates from the lithium‐based one despite the physical and chemical similarities, the architecture and chemical structure of electrode materials should be designed for highly efficient sodium storage and capture technologies. Here, the rational design in the structure and chemistry of carbon materials for sodium‐ion batteries (SIBs), sodium‐ion capacitors (SICs), and capacitive deionization (CDI) applications is comprehensively reviewed. Types and features of carbon materials are classified into ordered and disordered carbons as well as nanodimensional and nanoporous carbons, covering the effect of synthesis parameters on the carbon structure and chemistry. The sodium storage mechanism and performance of these carbon materials are correlated with the key structural/chemical factors, including the interlayer spacing, crystallite size, porous characteristics, micro/nanostructure, morphology, surface chemistry, heteroatom incorporation, and hybridization. Finally, perspectives on current impediment and future research directions into the development of practical SIBs, SICs, and CDI are also provided.  相似文献   

20.
There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号