共查询到19条相似文献,搜索用时 93 毫秒
1.
特定目标情感分析作为情感分析一个重要的子任务,近年来得到越来越多研究人员的关注.针对在特定目标情感分析中,将注意力机制和LSTM等序列性输入网络相结合的网络模型训练时间长、且无法对文本进行平行化输入等问题,提出一种基于多注意力卷积神经网络(multi-attention convolution neural networks, MATT-CNN)的特定目标情感分析方法.相比基于注意力机制的LSTM网络,该方法可以接收平行化输入的文本信息,大大降低了网络模型的训练时间.同时,该方法通过结合多种注意力机制有效弥补了仅仅依赖内容层面注意力机制的不足,使模型在不需要例如依存句法分析等外部知识的情况下,获取更深层次的情感特征信息,有效识别不同目标的情感极性.最后在SemEval2014数据集和汽车领域数据集(automotive-domain data, ADD)进行实验,取得了比普通卷积神经网络、基于单注意力机制的卷积神经网络和基于注意力机制的LSTM网络更好的效果. 相似文献
3.
4.
只基于注意力机制的深度记忆网络不能有效处理目标上下文情感依赖于具体目标的情况,为了解决该问题,提出了一个对目标敏感的深度记忆网络模型。该模型利用注意力机制来获取决定目标上下文情感的信息,然后通过交互模块将上下文情感表示和上下文与目标之间的交互信息融合成分类特征,最后分类得到目标的情感极性。在SemEval 2014 task4的两个数据集上进行实验,实现了比只基于注意力机制的DMN模型明显更好的◢F▼◣▽1值。实验结果表明,在解决上下文情感依赖于具体目标的问题时,考虑上下文与目标之间的交互信息是有效的。 相似文献
5.
近年来,深度学习在情感分析任务中的应用得到了越来越多的关注.针对以文本词向量作为输入的卷积神经网络无法充分利用情感分析任务中特有的情感特征信息,以及难以有效表示每个词语在句子中的重要程度等问题,提出一种基于多通道卷积神经网络(multi-channels convolutional neural networks, MCCNN)的中文微博情感分析模型.该模型针对情感分析任务中特有的情感信息来构建文本输入矩阵,使模型在训练过程中有效获取输入句子的情感特征信息.同时,该模型通过将不同特征信息结合形成不同的网络输入通道,使网络模型在训练过程中从多方面的特征表示来学习输入句子的情感信息,有效表示出每个词语在句子中的重要程度,获取更多的隐藏信息.最后在COAE2014数据集和微博语料数据上进行实验,取得了比普通卷积神经网络、结合情感信息的卷积神经网络和传统分类器更好的性能. 相似文献
6.
随着新型社交媒体的发展,作为传播网络舆论的重要媒介,微博已然成为挖掘民意的平台.自然语言处理技术可以从微博文本中提取有效情感信息,为网络舆情监控、预测潜在问题及产品分析等提供科学的决策依据.为了克服现有的浅层学习算法对复杂函数表示能力有限的问题,本文尝试融合深度学习的思想,提出基于Word2Vec和针对长短时记忆网络改进的循环神经网络的方法进行中文微博情感分析.在两万多条中文标注语料上进行训练实验,实验数据与SVM、RNN、CNN作对比,对比结果证明,本文提出的情感分析模型准确率达到了91.96%,可以有效提高微博文本情感分类的正确率. 相似文献
7.
8.
基于BiLSTM-CNN串行混合模型的文本情感分析 总被引:1,自引:0,他引:1
针对现有文本情感分析方法准确率不高、实时性不强以及特征提取不充分的问题,构建了双向长短时记忆神经网络和卷积神经网络(BiLSTM-CNN)的串行混合模型。首先,利用双向循环长短时记忆(BiLSTM)神经网络提取文本的上下文信息;然后,对已提取的上下文特征利用卷积神经网络(CNN)进行局部语义特征提取;最后,使用Softmax得出文本的情感倾向。通过与CNN、长短时记忆神经网络(LSTM)、BiLSTM等单一模型对比,所提出的文本情感分析模型在综合评价指标F1上分别提高了2.02个百分点、1.18个百分点和0.85个百分点;与长短时记忆神经网络和卷积神经网络(LSTM-CNN)、BiLSTM-CNN并行特征融合等混合模型对比,所提出的文本情感分析模型在综合评价指标F1上分别提高了1.86个百分点和0.76个百分点。实验结果表明,基于BiLSTM-CNN的串行混合模型在实际应用中具有较大的价值。 相似文献
9.
关系分类是自然语言处理领域的一项重要语义处理任务。传统的关系分类方法通过人工设计各类特征以及各类核函数来对句子内部2个实体之间的关系进行判断。近年来,关系分类方法的主要工作集中于通过各类神经网络获取句子的语义特征表示来进行分类,以减少手动构造各类特征。在句子中,不同关键词对关系分类任务的贡献程度是不同的,然而重要的词义有可能出现在句子中的任意位置。为此,提出了一种基于注意力的混合神经网络关系分类模型来捕获重要的语义信息,用来进行关系分类,该方法是一种端到端的方法。实验结果表明了该方法的有效性。 相似文献
10.
特定目标情感分析旨在判断上下文语境在给定目标词下所表达的情感倾向。对句子语义信息编码时,目前大部分循环神经网络或注意力机制等方法,不能充分捕捉上下文中长距离的语义信息,同时忽略了位置信息的重要性。该文认为句子的语义信息、位置信息和多层次间的信息融合对该任务至关重要,从而提出了基于混合多头注意力和胶囊网络的模型。首先,使用多头自注意力分别在位置词向量基础上对上下文长句子和在双向GRU基础上对目标词进行语义编码;然后,使用胶囊网络在语义信息交互拼接基础上进行位置信息编码;最后,在融入原始语义信息基础上,使用多头交互注意力对上下文与目标词并行融合的方法得到情感预测结果。在公开数据集SemEval 2014 Task4和ACL 14 Twitter上的实验表明,该文模型性能较传统深度学习和标准注意力方法有显著提升,验证了模型的有效性和可行性。 相似文献
11.
针对传统机器学习的情感分类方法存在长距离依赖问题、深度学习存在忽略情感词库的弊端,提出了一种基于注意力机制与双向长短记忆网络和卷积神经网络模型相结合的维吾尔文情感分类方法。将多特征拼接向量作为双向长短记忆网络的输入捕获文本上下文信息,使用注意力机制和卷积网络获取文本隐藏情感特征信息,有效增强了对文本情感语义的捕获能力。实验结果表明,该方法在二分类和五分类情感数据集上的◢F◣▼1▽值相比于机器学习方法分别提高了5.59%和7.73%。 相似文献
12.
目前基于循环神经网络和注意力机制的方面级情感分析模型缺乏解释相关句法约束和远程单词依赖关系.针对该问题提出结合句子依存树和单词序列信息建立句子关系图模型.首先将句子表示为图,单词作为图的节点,依存句法树的边和单词序列作为图的边;然后提出邻接矩阵标记方案对句子关系图进行标记;最后利用图神经网络实现节点和边的分类任务.该模型在SemEval2014任务中的restaurant和laptop两个数据集上进行实验,在两个数据集上F1值提升了5%左右.实验结果表明,将句子转换成图利用图神经网络对句子进行方面级情感分析是有益的. 相似文献
13.
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用Skip-Gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding组合为二维特征矩阵作为卷积神经网络的输入;此外,每次迭代训练过程中,输入特征也作为参数进行更新。其次,设计了一种具有3种不同大小卷积核的神经网络结构,从而完成多种局部抽象特征的自动提取过程。与传统机器学习方法相比,所提出的基于word embedding和CNN的情感分类模型成功将分类正确率提升了5.04%。 相似文献
14.
为让用户通过输入自然语言就可以跟机器进行交互,实现文本的智能问答,提出基于混合神经网络的智能问答算法。将LSTM (long short-term memory)和CNN (convolutional neural network)相结合。利用LSTM计算问题和答案的语义特征,针对语义特征的选择进行改进。采用CNN对LSTM得到的语义特征进行筛选;通过计算问题和答案特征之间的相似度得到该模型的目标函数,给出问题对应的正确答案。仿真结果验证了该算法的可行性及有效性。 相似文献
15.
针对现阶段容器环境下恶意软件检测研究较少且检测率较低的问题,提出了一种基于LSTM-CNN的容器内恶意软件静态检测方法,用以在恶意软件运行前进行检测,从源头阻断其攻击行为,降低检测过程给容器运行带来的性能损耗。该方法通过无代理的方式获取容器内待测软件,提取其API调用序列作为程序行为数据,利用word2vec模型对程序API调用序列进行向量化表征,并基于LSTM和CNN分别提取其语义信息及多维局部特征以实现恶意软件的检测。在容器环境下实现了该方法,并基于公开数据集VirusShare进行测试,结果表明该方法可达到99.76%的检测率且误报率低于1%,优于同类其他方法。 相似文献
16.
17.
目的 图像检索是计算机视觉的一项重要任务。图像检索的关键是图像的内容描述,复杂图像的内容描述很具有挑战性。传统的方法用固定长度的向量描述图像内容,为此提出一种变长序列描述模型,目的是丰富特征编码的信息表达能力,提高检索精度。方法 本文提出序列描述模型,用可变长度特征序列描述图像。序列描述模型首先用CNN(convolutional neural network)提取底层特征,然后用中间层LSTM(long short-term memory)产生局部特征的相关性表示,最后用视觉注意LSTM(attention LSTM)产生一组向量描述一幅图像。通过匈牙利算法计算图像之间的相似性完成图像检索任务。模型采用标签级别的triplet loss函数进行端对端的训练。结果 在MIRFLICKR-25K和NUS-WIDE数据集上进行图像检索实验,并和相关算法进行比较。相对于其他方法,本文模型检索精度提高了512个百分点。相对于定长的图像描述方式,本文模型在多标签数据集上能够显著改善检索效果。结论 本文提出了新的图像序列描述模型,可以显著改善检索效果,适用于多标签图像的检索任务。 相似文献
18.
基于CNN-LSTM的QAR数据特征提取与预测 总被引:1,自引:0,他引:1
针对传统数据驱动的故障诊断方法难以从QAR数据中提取有效特征的问题,提出一种融合卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)的双通道融合模型CNN-LSTM。CNN与LSTM分别作为两个通道,通过注意力机制(attention)融合,从而使模型能同时表达数据在空间维度和时间维度上的特征,并以时间序列预测的方式验证融合模型特征提取的有效性。实验结果表明,双通道融合模型与单一的CNN、LSTM相比,能够更有效地提取数据特征,模型单步预测与多步预测误差平均降低35.3%。为基于QAR数据的故障诊断提供一种新的研究思路。 相似文献
19.
为提取文本的局部最优情感极性、捕捉文本情感极性转移的语义信息,提出一种基于卷积注意力机制的神经网络模型(CNNattentionLSTM)。使用卷积操作提取文本注意力信号,将其加权融合到Word-Embedding文本分布式表示矩阵中,突出文本关注重点的情感词与转折词,使用长短记忆网络LSTM来捕捉文本前后情感语义关系,采用softmax线性函数实现情感分类。在4个数据集上进行的实验结果表明,在具有情感转折词的文本中,该模型能够更精准捕捉文本情感倾向,提高分类精度。 相似文献