共查询到20条相似文献,搜索用时 62 毫秒
1.
杨晓月 《计算机与数字工程》2021,49(11):2305-2309,2330
不平衡数据的分类问题在数据挖掘和机器学习领域中,一直是备受关注的问题.论文从数据预处理方面出发,提出一种基于谱聚类的欠采样方法,以此来降低数据的不平衡程度.先对多类样本进行谱聚类,根据每个聚类簇的密集程度,以及到少类样本的平均距离,来计算每个聚类簇的采样数目和选取怎样的多类样本,此欠采样方法可以有效去除多数类的冗余数据.实验结果证明,该算法可以有效提升少类样本的分类效果. 相似文献
2.
不平衡数据常出现在各应用领域中,传统分类器往往关注于多数类样本而导致样本分类效果不理想。针对此问题,提出一种基于聚类欠采样的集成分类算法(ClusterUndersampling-AdaCost, CU-AdaCost)。该算法通过计算样本间维度加权后的欧氏距离得出各簇的样本中心位置,根据簇心邻域范围选择出信息特征较强的多数类样本,形成新的训练集;并将训练集放在引入代价敏感调整函数的集成算法中,使得模型更加关注于少数类别。通过对6组UCI数据集进行对比实验,结果表明,该算法在欠采样过程中抽取的样本具有较强的代表性,能够有效提高模型对少数类别的分类性能。 相似文献
3.
基于聚类融合的不平衡数据分类方法 总被引:2,自引:0,他引:2
不平衡数据分类问题目前已成为数据挖掘和机器学习的研究热点。文中提出一类基于聚类融合的不平衡数据分类方法,旨在解决传统分类方法对少数类的识别率较低的问题。该方法通过引入“聚类一致性系数”找出处于少数类边界区域和处于多数类中心区域的样本,并分别使用改进的SMOTE过抽样方法和改进的随机欠抽样方法对训练集的少数类和多数类进行不同的处理,以改善不同类数据的平衡度,为分类算法提供更好的训练平台。通过实验对比8种方法在一些公共数据集上的分类性能,结果表明该方法对少数类和多数类均具有较高的识别率。 相似文献
4.
在面对现实中广泛存在的不平衡数据分类问题时,大多数 传统分类算法假定数据集类分布是平衡的,分类结果偏向多数类,效果不理想。为此,提出了一种基于聚类融合欠抽样的改进AdaBoost分类算法。该算法首先进行聚类融合,根据样本权值从每个簇中抽取一定比例的多数类和全部的少数类组成平衡数据集。使用AdaBoost算法框架,对多数类和少数类的错分类给予不同的权重调整,选择性地集成分类效果较好的几个基分类器。实验结果表明,该算法在处理不平衡数据分类上具有一定的优势。 相似文献
5.
基于K-means聚类的欠采样存在仅适用于超球形状数据、未考虑重叠区对分类的影响及簇中样本的稠密程度等问题.因此,文中提出基于密度峰值聚类的自适应欠采样方法.首先利用近邻搜索算法识别重叠区的多数类样本并将其删除.然后应用改进的密度峰值聚类自动获得多个不同形状、大小和密度的子簇.再根据子簇中样本的稠密程度计算采样权重并进行欠采样,在获得的平衡数据集上进行bagging集成分类.实验表明,文中方法在大多数数据集上性能表现较优. 相似文献
6.
7.
不平衡分类问题广泛地应用于现实生活中,针对大多数重采样算法侧重于类间平衡,较少关注类内数据分布不平衡问题,提出一种基于聚类的混合采样算法。首先对原始数据集聚类,然后对每一簇样本计算不平衡比,根据不平衡比的大小对该簇样本做出相应处理,最后将平衡后的数据集放入GBDT分类器进行训练。实验表明该算法与几种传统算法相比F1-value和AUC更高,分类效果更好。 相似文献
8.
针对分类任务中的不平衡数据集造成的分类性能低下的问题,提出了类不平衡数据的EM聚类过采样算法,通过过采样提高少数类样本数量,从根本上解决数据不平衡问题。首先,算法采用聚类技术,通过欧式距离衡量样本间的相似度,选取每个聚类簇的中心点作为过采样点,一定程度解决了样本的重要程度不够的问题;其次,通过直接在少数类样本空间上进行采样,可较好解决SMOTE、Cluster-SMOTE等方法对聚类空间没有针对性的问题;同时,通过对少数类样本数量的30%进行过采样,有效解决基于Cluster聚类的欠采样盲目追求两类样本数量平衡和SMOTE等算法没有明确采样率的问题。在公开的24个类不平衡数据集上进行了实验,验证了方法的有效性。 相似文献
9.
10.
采样技术与ELM分类算法进行结合可提高少数类样本的分类精度,但现有的大多数结合ELM的采样方法并未考虑到样本的不平衡程度及样本内部的分布情况,采样技术过于单一,导致分类模型的效率低下,少数类样本的识别率不高。针对此问题,提出了一种基于DPC聚类的重采样技术结合ELM的不平衡数据分类算法,首先根据数据集的不平衡程度分2种情况构建一个混合采样模型来平衡数据集;然后在此模型上运用DPC聚类算法分别对多数类样本和少数类样本进行分析处理,解决数据中存在的类内不平衡和噪声问题,使得2类样本相对均衡;最后使用ELM分类算法对得到的数据集进行分类。实验结果表明,与同类型分类算法进行比较,所提算法的2个分类性能指标在实验数据集上都有明显提升。 相似文献
11.
基于集成的非均衡数据分类主动学习算法 总被引:1,自引:0,他引:1
当前,处理类别非均衡数据采用的主要方法之一就是预处理,将数据均衡化之后采取传统的方法加以训练.预处理的方法主要有过取样和欠取样,然而过取样和欠取样都有自己的不足,提出拆分提升主动学习算法SBAL( Split-Boost Active Learning),该算法将大类样本集根据非均衡比例分成多个子集,子集与小类样本集合并,对其采用AdaBoost算法训练子分类器,然后集成一个总分类器,并基于QBC( Query-by-committee)主动学习算法主动选取有效样本进行训练,基本避免了由于增加样本或者减少样本所带来的不足.实验表明,提出的算法对于非均衡数据具有更高的分类精度. 相似文献
12.
《计算机应用与软件》2014,(8)
近年来,由于机器学习能够很好地解决恶意软件检测问题,因而受到了广泛的关注。为了进一步提高恶意软件的检测性能,将机器学习中的动态集成选择应用到恶意软件检测中。为了满足检测性能和保证检测的实时性需求,在动态集成选择的基础上,提出一种基于聚类的动态集成选择算法CDES(Cluster based Dynamic Ensemble Selection strategy)。该方法首先通过聚类得到多个聚类中心,然后为每一个聚类中心选择一组分类器组成集成分类器。当检测未知样本时,首先找到与该样本最近的聚类中心,那么用于分类该聚类中心的集成分类器就是当前测试样本的集成分类器。最终的检测结果也由这一组分类器通过投票得到。实验中,将所提算法与其他相关算法作比较,实验结果表明所提算法明显优于其他算法。同时,所提算法运行时间远远低于其他算法,可以满足系统的实时性要求。 相似文献
13.
少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALSMOTE。由于主动学习支持向量机采用基于距离的主动选择最佳样本的学习策略,因此能够主动选择非均衡数据中的有价值的多数类样本,舍弃价值较小的样本,从而提高运算效率,改进SMOTE带来的问题。首先运用SMOTE方法均衡小部分样本,得到初始分类器;然后利用主动学习策略调整分类器精度。实验结果表明,该方法有效提高了非均衡数据的分类准确率。 相似文献
14.
基于密度的方法和基于距离的方法是两类常用的对象聚类方式。本文提出了一种基于对象“形状”的聚类算法,外表面距离为零的对象将被自动聚为一类。文中给出了对象形状的定义,有形对象之间距离的计算方法,以及基于对象形状的聚类算法。最后给出一个具体实例,说明了理论和实际的相容性。 相似文献
15.
在数据分类算法的实际应用中,经常会遇到数据不平衡的问题(即正负样本的数目相差极大)。标准的分类算法在处理这一问题时,往往很难达到令人满意的性能。提出一种新的方法,通过对正负样本分别进行核函数拟合,根据拟合好的核函数对未知样本进行预测。在UCI标准数据集的仿真实验结果表明,该方法能有效地处理非平衡数据问题。 相似文献
16.
一种基于混合遗传算法的聚类方法 总被引:1,自引:0,他引:1
针对遗传算法在聚类时存在的搜索速度慢和早熟的问题,将禁忌搜索的自适应优点引入遗传操作来改良其全局搜索性能,并采用带有权重的相似性度量方法,提出了一种基于混合遗传算法的聚类算法.通过与常用的聚类方法的实验结果比较,表明这种方法具有良好的聚类效果. 相似文献
17.
分析目前基于聚类思想的遗传算法的不足,提出一种基于生长树聚类的改进型遗传算法。采用最小生成树的聚类方法,能对形状复杂且非重叠样本的候选解进行聚类形成家族;新的族间交叉算子保持了种群的多样性;改进的族内交叉算子和改进的变异算子使得算法在后期仍能快速收敛;实验对经典算法测试函数进行优化,并与其他算法的优化结果对比,从而说明改进型遗传算法的性能。实验结果表明:基于生长树聚类的改进型遗传算法能有效提高求解精度,快速搜索到最优解。 相似文献
18.
Web文本分类是数据挖掘领域的研究热点。针对Web文本数据集高维和不平衡的特点,将模糊隶属度和平衡因子引入近似支持向量机,提出模糊加权近似支持向量机。首先计算样本的平均密度,并结合样本数量求得平衡因子,克服传统加权算法仅以样本数为依据设置权值的缺陷,缓解数据不平衡造成的分类超平面偏移;再计算样本的模糊隶属度,消除噪声和奇异点造成的分类误差;近似支持向量机相比标准支持向量机具有明显的速度优势,更加适用于高维数据分类。实验表明,算法能有效提高不平衡数据的分类精度,在Web文本的训练速度和分类质量上有一定提高。 相似文献
19.
针对传统基于距离度量的聚类算法难以适合高维数据聚类以及高维数据之间相似度难定义的问题,提出了一种新的高维数据聚类算法.该算法基于一个能够更准确地表达出高维对象之间相似性的度量函数,首先计算对象两两之间的相似度并得出一个相似度矩阵,然后根据该相似度矩阵和阈值大小自底向上对数据进行聚类分析.实验结果显示,该算法能够获得质量更高的聚类结果,并且不受孤立点影响,对输入数据顺序也不敏感. 相似文献
20.
随着信息结构的日益复杂,单种聚类算法已经无法满足需求,集成聚类便发挥了巨大的作用。对于不同的划分,当前集成聚类算法都将其视为整体,其过程中会有信息损失。利用局部一致的特性,局部一致性集成聚类算法在非负矩阵分解的框架下得以产生。实验结果表明了该方法的有效性。 相似文献