首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an expert speaker identification system is presented for speaker identification using Turkish speech signals. Here, a discrete wavelet adaptive network based fuzzy inference system (DWANFIS) model is used for this aim. This model consists of two layers: discrete wavelet and adaptive network based fuzzy inference system. The discrete wavelet layer is used for adaptive feature extraction in the time–frequency domain and is composed of discrete wavelet decomposition and discrete wavelet entropy. The performance of the used system is evaluated by using repeated speech signals. These test results show the effectiveness of the developed intelligent system presented in this paper. The rate of correct classification is about 90.55% for the sample speakers.  相似文献   

2.
In this paper, an intelligent speaker identification system is presented for speaker identification by using speech/voice signal. This study includes both combination of the adaptive feature extraction and classification by using optimum wavelet entropy parameter values. These optimum wavelet entropy values are obtained from measured Turkish speech/voice signal waveforms using speech experimental set. It is developed a genetic wavelet adaptive network based on fuzzy inference system (GWANFIS) model in this study. This model consists of three layers which are genetic algorithm, wavelet and adaptive network based on fuzzy inference system (ANFIS). The genetic algorithm layer is used for selecting of the feature extraction method and obtaining the optimum wavelet entropy parameter values. In this study, one of the eight different feature extraction methods is selected by using genetic algorithm. Alternative feature extraction methods are wavelet decomposition, wavelet decomposition – short time Fourier transform, wavelet decomposition – Born–Jordan time–frequency representation, wavelet decomposition – Choi–Williams time–frequency representation, wavelet decomposition – Margenau–Hill time–frequency representation, wavelet decomposition – Wigner–Ville time–frequency representation, wavelet decomposition – Page time–frequency representation, wavelet decomposition – Zhao–Atlas–Marks time–frequency representation. The wavelet layer is used for optimum feature extraction in the time–frequency domain and is composed of wavelet decomposition and wavelet entropies. The ANFIS approach is used for evaluating to fitness function of the genetic algorithm and for classification speakers. It has been evaluated the performance of the developed system by using noisy Turkish speech/voice signals. The test results showed that this system is effective in detecting real speech signals. The correct classification rate is about 91% for speaker classification.  相似文献   

3.
In this paper, an intelligent diagnosis for fault gear identification and classification based on vibration signal using discrete wavelet transform and adaptive neuro-fuzzy inference system (ANFIS) is presented. The discrete wavelet transform (DWT) technique plays one of the important roles for signal feature extraction in the proposed system. The abnormal transient signals will show in different decomposition levels and can be used to recognize the various faults by the DWT figure. However, many fault conditions are hard to inspect accurately by the naked eye. In the present study, the feature extraction method based on discrete wavelet transform with energy spectrum is proposed. The different order wavelets are considered to identify fault features accurately. The database is established by feature vectors of energy spectrum which are used as input pattern in the training and identification process. Furthermore, the ANFIS is proposed to identify and classify the fault gear positions and the gear fault conditions in the fault diagnosis system. The proposed ANFIS includes both the fuzzy logic qualitative approximation and the adaptive neural network capability. The experimental results verified that the proposed ANFIS has more possibilities in fault gear identification. The ANFIS achieved an accuracy identification rate which was more satisfactory than traditional vision inspection in the proposed system.  相似文献   

4.
In this paper, an intelligent diagnosis system based on principle component analysis (PCA) and adaptive network based on fuzzy inference system (ANFIS) for the heart valve disease is introduced. This intelligent system deals with combination of the feature extraction and classification from measured Doppler signal waveforms at the heart valve using the Doppler ultrasound (DHS). Here, the wavelet entropy is used as features. This intelligent system has three phases. In pre-processing phase, the data acquisition and pre-processing for DHS signals are performed. In feature extraction phase, the feature vector is extracted by calculating the 12 wavelet entropy values for per DHS signal and dimension of Doppler signal dataset, which are 12 features, is reduced to 6 features using PCA. In classification phase, these reduced wavelet entropy features are given to inputs ANFIS classifier. The correct diagnosis performance of the PCA–ANFIS intelligent system is calculated in 215 samples. The classification accuracy of this PCA–ANFIS intelligent system was 96% for normal subjects and 93.1% for abnormal subjects.  相似文献   

5.
An expert system is presented for interpretation of the Doppler signals of heart valve diseases based on pattern recognition. We deal in particular with the combination of feature extraction and classification from measured Doppler signal waveforms at the heart valve using Doppler ultrasound. A wavelet neural network model developed by us is used. The model consists of two layers: a wavelet layer and a multilayer perceptron. The wavelet layer used for adaptive feature extraction in the time–frequency domain is composed of wavelet decomposition and wavelet entropy. The multilayer perceptron used for classification is a feedforward neural network. The performance of the developed system has been evaluated in 215 samples. The test results show that this system is effective to detect Doppler heart sounds. The classification rate averaged 91% correct for 123 test subjects.  相似文献   

6.
Speech and speaker recognition is an important topic to be performed by a computer system. In this paper, an expert speaker recognition system based on optimum wavelet packet entropy is proposed for speaker recognition by using real speech/voice signal. This study contains both the combination of the new feature extraction and classification approach by using optimum wavelet packet entropy parameter values. These optimum wavelet packet entropy values are obtained from measured real English language speech/voice signal waveforms using speech experimental set. A genetic-wavelet packet-neural network (GWPNN) model is developed in this study. GWPNN includes three layers which are genetic algorithm, wavelet packet and multi-layer perception. The genetic algorithm layer of GWPNN is used for selecting the feature extraction method and obtaining the optimum wavelet entropy parameter values. In this study, one of the four different feature extraction methods is selected by using genetic algorithm. Alternative feature extraction methods are wavelet packet decomposition, wavelet packet decomposition – short-time Fourier transform, wavelet packet decomposition – Born–Jordan time–frequency representation, wavelet packet decomposition – Choi–Williams time–frequency representation. The wavelet packet layer is used for optimum feature extraction in the time–frequency domain and is composed of wavelet packet decomposition and wavelet packet entropies. The multi-layer perceptron of GWPNN, which is a feed-forward neural network, is used for evaluating the fitness function of the genetic algorithm and for classification speakers. The performance of the developed system has been evaluated by using noisy English speech/voice signals. The test results showed that this system was effective in detecting real speech signals. The correct classification rate was about 85% for speaker classification.  相似文献   

7.
In last year’s, the expert target recognition has been become very important topic in radar literature. In this study, a target recognition system is introduced for expert target recognition (ATR) using radar target echo signals of High Range Resolution (HRR) radars. This study includes a combination of an adaptive feature extraction and classification using optimum wavelet entropy parameter values. The features used in this study are extracted from radar target echo signals. Herein, a genetic wavelet extreme learning machine classifier model (GAWELM) is developed for expert target recognition. The GAWELM composes of three stages. These stages of GAWELM are genetic algorithm, wavelet analysis and extreme learning machine (ELM) classifier. In previous studies of radar target recognition have shown that the learning speed of feedforward networks is in general much slower than required and it has been a major disadvantage. There are two important causes. These are: (1) the slow gradient-based learning algorithms are commonly used to train neural networks, and (2) all the parameters of the networks are fixed iteratively by using such learning algorithms. In this paper, a new learning algorithm named extreme learning machine (ELM) for single-hidden layer feedforward networks (SLFNs) Ahern et al., 1989, Al-Otum and Al-Sowayan, 2011, Avci et al., 2005a, Avci et al., 2005b, Biswal et al., 2009, Frigui et al., in press, Cao et al., 2010, Guo et al., 2011, Famili et al., 1997, Han and Huang, 2006, Huang et al., 2011, Huang et al., 2006, Huang and Siew, 2005, Huang et al., 2009, Jiang et al., 2011, Kubrusly and Levan, 2009, Le et al., 2011, Lhermitte et al., in press, Martínez-Martínez et al., 2011, Matlab, 2011, Nelson et al., 2002, Nejad and Zakeri, 2011, Tabib et al., 2009, Tang et al., 2011, which randomly choose hidden nodes and analytically determines the output weights of SLFNs, to eliminate the these disadvantages of feedforward networks for expert target recognition area. Then, the genetic algorithm (GA) stage is used for obtaining the feature extraction method and finding the optimum wavelet entropy parameter values. Herein, the optimal one of four variant feature extraction methods is obtained by using a genetic algorithm (GA). The four feature extraction methods proposed GAWELM model are discrete wavelet transform (DWT), discrete wavelet transform–short-time Fourier transform (DWT–STFT), discrete wavelet transform–Born–Jordan time–frequency transform (DWT–BJTFT), and discrete wavelet transform–Choi–Williams time–frequency transform (DWT–CWTFT). The discrete wavelet transform stage is performed for optimum feature extraction in the time–frequency domain. The discrete wavelet transform stage includes discrete wavelet transform and calculating of discrete wavelet entropies. The extreme learning machine (ELM) classifier is performed for evaluating the fitness function of the genetic algorithm and classification of radar targets. The performance of the developed GAWELM expert radar target recognition system is examined by using noisy real radar target echo signals. The applications results of the developed GAWELM expert radar target recognition system show that this GAWELM system is effective in rating real radar target echo signals. The correct classification rate of this GAWELM system is about 90% for radar target types used in this study.  相似文献   

8.
The wavelet transform (WT) is used to represent all possible types of transients in vibration signals generated by faults in a gear box. It is shown that the transform provides a powerful tool for condition monitoring and fault diagnosis. The vibration signal of a spur bevel gear box in different conditions is used to demonstrate the application of various wavelets in feature extraction. In present work, a discrete wavelet, Daubechies wavelets (db1–db15) is used for feature extraction and their relative effectiveness in feature extraction is compared. The major steps in pattern classification are feature extraction and classification. This paper investigates the use of discrete wavelets for feature extraction and a Decision Tree for classification. J48 Decision Tree algorithm has been used for feature selection as well as for classification. This paper illustrates the powerfulness and flexibility of the discrete wavelet transform to decompose linear and non-linear processing of vibration signal.  相似文献   

9.
脑-机接口BCI是一种实现人脑和外部设备通信的新兴技术。基于时频特性进行特征提取的传统方法无法体现EEG信号的非线性特征。为了进一步提高分类的准确率,首先采用小波阈值降噪的预处理方法提高了EEG信号的信噪比。然后结合非线性动力学的样本熵参数,对3种想象运动的脑电信号进行特征提取,保留了脑电信号的非线性特征。其中,运动想象MI脑电信号的研究一直都是BCI这一高速发展领域的重点目标。还研究了支持向量机、LVQ神经网络和BP神经网络3种分类器。通过实验结果对比发现,BP神经网络具有较高的识别率,更适用于脑电信号的分类识别。  相似文献   

10.
In most of the industries related to mechanical engineering, the usage of pumps is high. Hence, the system which takes care of the continuous running of the pump becomes essential. In this paper, a vibration based condition monitoring system is presented for monoblock centrifugal pumps as it plays relatively critical role in most of the industries. This approach has mainly three steps namely feature extraction, classification and comparison of classification. In spite of availability of different efficient algorithms for fault detection, the wavelet analysis for feature extraction and Naïve Bayes algorithm and Bayes net algorithm for classification is taken and compared. This paper presents the use of Naïve Bayes algorithm and Bayes net algorithm for fault diagnosis through discrete wavelet features extracted from vibration signals of good and faulty conditions of the components of centrifugal pump. The classification accuracies of different discrete wavelet families were calculated and compared to find the best wavelet for the fault diagnosis of the centrifugal pump.  相似文献   

11.
An optimum feature extraction method for texture classification   总被引:1,自引:0,他引:1  
Texture can be defined as a local statistical pattern of texture primitives in observer’s domain of interest. Texture classification aims to assign texture labels to unknown textures, according to training samples and classification rules. In this paper a novel method, which is an intelligent system for texture classification is introduced. It used a combination of genetic algorithm, discrete wavelet transform and neural network for optimum feature extraction from texture images. An algorithm called the intelligent system, which processes the pattern recognition approximation, is developed. We tested the proposed method with several texture images. The overall success rate is about 95%.  相似文献   

12.
Listening via stethoscope is a preferential method, being used by physicians for distinguishing normal and abnormal cardiac systems. On the other hand, listening with stethoscope has a number of constraints. The interpretation of various heart sounds depends on physician’s ability of hearing, experience, and skill. Such limitations may be reduced by developing biomedical-based decision support systems. In this study, a biomedical-based decision support system was developed for the classification of heart sound signals, obtained from 120 subjects with normal, pulmonary, and mitral stenosis heart valve diseases via stethoscope. Developed system comprises of three stages. In the first stage, for feature extraction, obtained heart sound signals were separated to its sub-bands using discrete wavelet transform (DWT). In the second stage, entropy of each sub-band was calculated using Shannon entropy algorithm to reduce the dimensionality of the feature vectors via DWT. In the third stage, the reduced features of three types of heart sound signals were used as input patterns of the adaptive neuro-fuzzy inference system (ANFIS) classifiers. Developed method reached 98.33% classification accuracy, and it was showed that purposed method is effective for detection of heart valve diseases.  相似文献   

13.
In recent years advanced signal processing techniques are used increasingly to excavate the nonstationary vibration signals and extract elemental-fault information. However, managing and analyzing a multicomponent signal mixed with background noise using only a single analysis tool is not a simple task and may lead to low diagnostic accuracy and a delayed diagnosis. This paper introduces a novel intelligent neuro-wavelet based system with high diagnostic accuracy based on nonrecursive variational mode decomposition (VMD) and wavelet-based neural network, which mainly consists of three steps (i.e. feature extraction (FE), dimension reduction (DR), and fault classification). Firstly, the vibration signals are segmented and processed by a novel nonrecursive VMD, which can decompose the nonstationary signals into a series of discrete modes adaptively, to extract informative features from vibration signals. Multi-Class generalized discriminant analysis is then used in the second step that aims to reduce the dimension of the feature set and improve the computational burden by selecting meaningful information and removing redundant features. In the next step, the obtained features vector is fed to a state-of-the-art hierarchical multi-resolution classifier, so-called wavelet neural network (WNN), which possesses the advantages of both wavelet transform and artificial neural networks for the decision-making. Additionally, to evaluate the information extraction capability of VMD, the subsequent DR method and the calculation accuracy of WNN, other state-of-the-art techniques are used in this work. In this regard, the superiority of the proposed approach is also confirmed through an experimental comparison with published works in the literature.  相似文献   

14.
提出一种心音的特征提取和分类方法,用离散小波变换分解、重构产生信号的细节包络,进而用于提取特征,从预处理的信号中提取统计特性,作为心音分类的特征。多层感知器用于心音的分类,并通过250个心动周期得到验证,算法识别率达到92%。  相似文献   

15.
This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) model for estimation of vigilance level by using electroencephalogram (EEG) signals recorded during transition from wakefulness to sleep. The developed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. This study comprises of three stages. In the first stage, three types of EEG signals (alert signal, drowsy signal and sleep signal) were obtained from 30 healthy subjects. In the second stage, for feature extraction, obtained EEG signals were separated to its sub-bands using discrete wavelet transform (DWT). Then, entropy of each sub-band was calculated using Shannon entropy algorithm. In the third stage, the ANFIS was trained with the back-propagation gradient descent method in combination with least squares method. The extracted features of three types of EEG signals were used as input patterns of the three ANFIS classifiers. In order to improve estimation accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The performance of the ANFIS model was tested using the EEG data obtained from 12 healthy subjects that have not been used for the training. The results confirmed that the developed ANFIS classifier has potential for estimation of vigilance level by using EEG signals.  相似文献   

16.
This paper describes a fault diagnosis system for automotive generators using discrete wavelet transform (DWT) and an artificial neural network. Conventional fault indications of automotive generators generally use an indicator to inform the driver when the charging system is malfunction. But this charge indicator tells only if the generator is normal or in a fault condition. In the present study, an automotive generator fault diagnosis system is developed and proposed for fault classification of different fault conditions. The proposed system consists of feature extraction using discrete wavelet analysis to reduce complexity of the feature vectors together with classification using the artificial neural network technique. In the output signal classification, both the back-propagation neural network (BPNN) and generalized regression neural network (GRNN) are used to classify and compare the synthetic fault types in an experimental engine platform. The experimental results indicate that the proposed fault diagnosis is effective and can be used for automotive generators of various engine operating conditions.  相似文献   

17.
This paper presents the experimental pilot study to investigate the effects of pulsed electromagnetic field (PEMF) at extremely low frequency (ELF) in response to photoplethysmographic (PPG), electrocardiographic (ECG), electroencephalographic (EEG) activity. The assessment of wavelet transform (WT) as a feature extraction method was used in representing the electrophysiological signals. Considering that classification is often more accurate when the pattern is simplified through representation by important features, the feature extraction and selection play an important role in classifying systems such as neural networks. The PPG, ECG, EEG signals were decomposed into time-frequency representations using discrete wavelet transform (DWT) and the statistical features were calculated to depict their distribution. Our pilot study investigation for any possible electrophysiological activity alterations due to ELF PEMF exposure, was evaluated by the efficiency of DWT as a feature extraction method in representing the signals. As a result, this feature extraction has been justified as a feasible method.  相似文献   

18.
Abstract: In this paper, the probabilistic neural network is presented for classification of electroencephalogram (EEG) signals. Decision making is performed in two stages: feature extraction by wavelet transform and classification using the classifiers trained on the extracted features. The purpose is to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrates that the wavelet coefficients obtained by the wavelet transform are features which represent the EEG signals well. The conclusions indicate that the probabilistic neural network trained on the wavelet coefficients achieves high classification accuracies (the total classification accuracy is 97.63%).  相似文献   

19.
Based on the inherent capability of automatic modulation classification (AMC), a new spectrum sensing method is proposed in this paper that can detect all forms of primary users’ signals in a cognitive radio environment. The study presented in this paper focuses on the sensing of some combined analog and digitally primary modulated signals. In achieving this objective, a combined analog and digital automatic modulation classifier was developed using an artificial neural network (ANN). The ANN classifier was combined with a GNU Radio and Universal Software Radio Peripheral version 2 (USRP2) to develop the Cognitive Radio Engine (CRE) for detecting primary users’ signals in a cognitive radio environment. The detailed information on the development and performance of the CRE are presented in this paper. The performance evaluation of the developed CRE shows that the engine can reliably detect all the primary modulated signals considered. Comparative performance evaluation carried out on the detection method presented in this paper shows that the proposed detection method performs favorably against the energy detection method currently acclaimed the best detection method. The study results reveal that a single detection method that can reliably detect all forms of primary radio signals in a cognitive radio environment, can only be developed if a feature common to all radio signals is used in its development rather than using features that are peculiar to certain signal types only.  相似文献   

20.
提出一种基于小波包多尺度信息熵的鱼类识别方法。该方法首先对鱼体的回波包络信号进行小波包分解,得到分布在不同频段内的分解信号,并提取各个频带内信号的信息熵作为识别特征量。对三种常见的不同形状的鱼类进行了水池试验,提取多尺度信息熵,并使用BP神经网络分类器成功进行了分类。结果表明:利用小波包多尺度信息熵作为特征量,可对不同形状的鱼类进行识别,且具有较高的识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号