共查询到20条相似文献,搜索用时 78 毫秒
1.
针对聚类算法中特征数据对聚类中心贡献的差异性及算法对初始聚类中心的敏感性等问题,提出一种基于知识量加权的直觉模糊均值聚类方法。首先将原始数据集直觉模糊化并改进最新的直觉模糊知识测度计算知识量,据此实现数据集特征加权,再利用核空间密度与核距离初始化聚类中心,以提高高维特征数据集的计算精度与聚类效率,最后基于类间样本距离与最小知识量原理建立聚类优化模型,得到最优迭代算法。基于UCI人工数据集的实验结果表明,所提方法较大程度地提高了聚类的准确性与迭代效率,分类正确率及执行效率分别平均提高了10.63%和31.75%,且具有良好的普适性和稳定性。该方法首次将知识测度新理论引入模糊聚类并取得优良效果,为该理论在其他相关领域的潜在应用开创了新例。 相似文献
2.
Wang Xing Zheng Cheng-zeng 《数字社区&智能家居》2008,(Z1)
本文首先对聚类算法进行了分析,然后以中小型商业批发企业为例,设计了一种反映客户价值与客户关系质量的客户细分模型,应用K-Means聚类方法进行了实际的挖掘。探讨在中小型企业不能提供完备数据的情况下,只要设计出合理的细分模型并选择合适的算法仍然可以实现有效的客户细分。 相似文献
3.
通过分析影像数据的特点,利用直方图的统计特性,结合HCM收敛速度快的优点,提出了一种基于直方图加权的半模糊化的聚类算法,此方法结合了全局与局部信息,提高了聚类的速度,改善了聚类的效果;采用Lena和脑影像实验与传统算法作比较证明了该算法的效果更好,并对一副97 658k的影像进行处理,证明了该算法效率高。 相似文献
4.
6.
图像分割是指将一幅图像分解为若干互不交迭的区域的集合,是图像处理和计算机视觉的基本问题之一。为了提高图像分割的效率,提出了一种基于2维直方图加权的塔形模糊c均值(FCM)聚类图像快速分割算法。该方法先通过构造合理的2维直方图对噪声进行抑制;然后通过塔形分解来缩减聚类样本集;最后利用加权FCM聚类算法进行分类。仿真结果表明,该方法的效率明显优于标准的FCM算法。此外,为确定分割的最优类别数c,还引入了一种基于该快速算法的聚类有效性评价函数——修正划分模糊度,实现了最佳图像分割类别数c的自动确定。基于人造图像和实际图像的测试实验结果表明该方法是有效的。 相似文献
7.
8.
9.
10.
《计算机应用与软件》2017,(4)
受益于独有的可能性聚类特性,较之传统FCM、k-means等基于类均值方法,PCM拥有更佳的聚类效果和抗噪性能。但PCM为传统单视角聚类算法,其在面对新兴多视角聚类场景时,往往效果欠佳。为解决此问题,基于PCM,提出一种新型的称为模糊加权多视角可能性聚类WCo-PCM算法。WCo-PCM显著优点在于其具备对各视角的自适应加权。有关UCI数据集的实验结果表明该算法较传统聚类算法及多视角聚类算法更具抗干扰性,有着更佳的聚类性能。 相似文献
11.
针对供应链网络节点重要度评估的意义以及现有节点收缩法在加权网络节点重要度评估中的不足,设计一种赋权方法改进的加权节点收缩法,对供应链节点重要度进行评估。以三角模糊数改进连边权值的确定方法,通过节点自身重要度和邻域节点间关系重要度的加权和衡量节点重要度。通过对比分析说明了改进的方法在解决不同节点重要度相同问题上的优势。以改进的节点收缩法对煤炭供应链中各节点的重要度进行评估,结果表明下水港口在煤炭供应链中的重要度最高,符合客观实际,验证了改进方法在供应链节点重要度评估问题上的准确性与有效性。 相似文献
12.
基于密度函数加权的模糊C均值聚类算法研究 总被引:1,自引:0,他引:1
模糊聚类算法具有较强的实用性,但传统模糊C均值算法(FCM)具有对样本集进行等划分趋势的缺陷,没有考虑不同样本的实际分布对聚类效果的影响,当数据集中各样本密集程度相差较大时,聚类结果不是很理想。因此,提出一种基于密度函数加权的模糊C均值聚类算法(DFCM算法),该算法利用数据对象的密度函数作为每个数据点权值。实验结果表明,与传统的模糊C均值算法相比,DFCM算法具有较好的聚类效果。 相似文献
13.
基于模拟退火的样本加权FCM算法 总被引:1,自引:0,他引:1
为了解决模糊C均值聚类算法(FCM)中聚类类数初始值是由先验知识人为确定并且目标函数忽略了样本属性数据之间的不均衡性问题,提出了一种基于模拟退火的样本加权FCM算法(SASWFCM),利用模拟退火算法可以寻求全局最优解的特点,计算出聚类数初始值,并对聚类中心和目标函数进行加权处理.通过实验分析,该算法与原FCM算法相比较而言,无需人为确定聚类初始值并且在分类准确数和准确率上有所提高,体现了算法的优越性,验证了改进后算法的实际价值. 相似文献
14.
传统的轨迹聚类方法存在定义轨迹相似度难度大,聚类过程中容易忽略轨迹细节等问题.基于矢量场的轨迹聚类(VFC)在保持轨迹原始运动特征的基础上,利用矢量场的几何结构可以很好地度量轨迹相似度.引入加权拟合方法,降低噪声对聚类的影响,以解决VFC鲁棒性较差问题.采用层次聚类动态地决定聚类类别数,以解决聚类类别数不能自适应的问题,提高聚类有效性.采用亚特兰大飓风数据作为实验原始轨迹数据,分别使用经典矢量场的轨迹聚类,k-means聚类,k-mediods聚类以及提出的方法进行实验,实验结果证明了加权拟合矢量场的层次聚类算法的有效性. 相似文献
15.
经典的模糊C-均值聚类算法存在对噪声数据较为敏感、未考虑样本属性特征间的不平衡性及对高维数据聚类不理想等问题,而可能性聚类算法虽然解决了噪声敏感和一致性聚类问题,但算法假定每个样本对聚类的贡献程度一样。针对以上问题,提出了一种基于样本-特征加权的可能性模糊核聚类算法,将可能性聚类应用到模糊聚类中以提高其对噪声或例外点的抗干扰能力;同时,根据不同类的具体特性动态计算样本各个属性特征对不同类别的重要性权值及各个样本对聚类的重要性权值,并优化选取核参数,不断修正核函数把原始空间中非线性可分的数据集映射到高维空间中的可分数据集。实验结果表明,基于样本-特征加权模糊聚类算法能够减少噪声数据和例外点的影响,比传统的聚类算法具有更好的聚类准确率。 相似文献
16.
针对蚁群融合模糊C-means (FCM)聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模糊蚁群的加权蛋白质复合物识别算法FAC-PC(algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering)。首先,融合边聚集系数与基因共表达的皮尔森相关系数构建加权网络;其次提出EPS(essential protein selection)度量公式来选取关键蛋白质,遍历关键蛋白质的邻居节点,设计蛋白质适应度PFC(protein fitness calculation)来获取关键组蛋白质,利用关键组蛋白质替换种子节点进行蚁群聚类,克服蚁群算法中因大量拾起放下和重复合并过滤操作而导致准确率和收敛速度过慢的缺陷;接着设计SI(similarity improvement)度量优化拾起放下概率来对节点进行蚁群聚类进而获得聚类数目;最后将关键蛋白质和通过蚁群聚类得到的聚类数目初始化FCM算法,设计隶属度更新策略来优化隶属度的更新,同时提出兼顾类内距和类间距的FCM迭代目标函数,最终利用改进的FCM完成复合物的识别。将FAC-PC算法应用在DIP数据上进行复合物的识别,实验结果表明FAC-PC算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。 相似文献
17.
为解决Ad Hoc网络分簇过程中恶意节点被选为簇首带来的安全隐患,保障Ad Hoc网络的正确分簇和稳定运行,提出基于节点相关度、相对移动性、剩余能量值、安全评估度量值多方面因素的自适应安全加权分簇算法。安全评估度量参数由外部入侵检测系统和内部节点信任度共同计算得到,确保安全因素在分簇过程中的准确性;基于该算法给出相应分簇管理过程。仿真结果表明,该算法能够改善分簇性能,提高Ad Hoc网络的安全性。 相似文献
18.
基于聚类算法的RBF神经网络设计综述 总被引:1,自引:0,他引:1
简要分析了径向基函数(RBF)神经网络。在此基础上,介绍了K-均值聚类算法的神经网络、C-均值聚类算法的神经网络和PAM聚类算法的神经网络三种聚类算法的RBF神经网络。展望了基于聚类的RBF神经网络设计的发展趋势。 相似文献
19.
将聚类网络用于非监督的图像分割,提出了竞争层神经元的动态调整机制和返回式的非重复训练学习方案,实现了聚类数的自适应增加,解决了随机生成权值矩阵产生的死点问题,提高了算法的收敛性能。实验结果表明,改进的聚类网络的图像分割结果优于C-均值聚类算法和通常的聚类网络。 相似文献
20.
标签传播算法(LPA)是一种高效地处理大规模网络的社区发现算法,由于其近乎线性的时间复杂度而受到广泛关注。然而,该算法每个节点的标签依赖于其邻居节点,其迭代速度和聚类有效性对标签信息的更新顺序非常敏感,影响了社区发现结果的准确性和稳定性。基于该问题,提出了一种基于加权聚类集成的标签传播算法。该算法利用多次标签传播算法的结果作为基聚类集,并用模块度评估每个基聚类的重要性,使其作为节点相似性度量的权值形成加权相似性矩阵,最后通过层次聚类得出最终的社区划分结果。在实验分析中,该算法和其他5个具有代表性的标签传播算法的改进算法在真实数据集上进行了比较,展示了新算法能有效地提高标签传播算法的社区发现精度。 相似文献