首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
姚鲁  宋慧慧  张开华 《计算机应用》2005,40(10):3048-3053
目前用于图像超分辨率重建的通道注意力机制存在注意力预测破坏每个通道和其权重的直接对应关系以及仅仅只考虑一阶或二阶通道注意力而没有综合考虑优势互补的问题,因此提出一种混合阶通道注意力网络的单图像超分辨率重建算法。首先,该网络框架利用局部跨通道相互作用策略将之前一、二阶通道注意力模型采用的升降维改为核为k的一维卷积。这样不仅使得通道注意力预测更直接准确,而且得到的模型相比之前的通道注意力模型更简单;同时,采用改进一、二阶通道注意力模型以综合利用不同阶通道注意力的优势,提高网络判别能力。在基准数据集上的实验结果表明,和现有的超分辨率算法相比,所提算法重建图像的纹理细节和高频信息能得到更好的恢复,且在Set5和BSD100数据集上感知指数(PI)分别平均提高0.3和0.1。这表明此网络能更准确地预测通道注意力并综合利用了不同阶通道注意力,一定程度上提升了性能。  相似文献   

2.
叶杨  蔡琼  杜晓标 《计算机应用》2020,40(12):3618-3623
单图像超分辨率是一个不适定的问题,是指在给定模糊和低分辨率图像的情况下重建纹理图案。卷积神经网络(CNN)最近被引入超分辨率领域中,尽管当前研究通过设计CNN的结构和连接方式获得了出色的性能,但是忽略了可以使用边缘数据来训练更强大的模型,因此提出了一种基于边缘数据增强的方法,即单图像超分辨率的非局部通道注意力(NCA)方法。该方法可以充分利用训练数据并通过非局部通道注意力提高性能。所提方法不仅为设计网络提供了引导,而且也可以对超分辨率任务进行解释。非局部通道注意力网络(NCAN)模型由主分支和边缘增强分支组成,通过往模型里输入低分辨率图像并预测边缘数据,使主分支自注意力重建超分辨率图像。实验结果表明,在BSD100基准数据集上与二阶注意力网络(SAN)模型相比,NCAN在3倍放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了0.21 dB和0.009;在Set5、Set14等其他基准数据集上与深度残差通道注意力网络(RCAN)模型相比,NCAN在3倍和4倍放大因子下的PSNR和SSIM都取得了较为明显的提升。NCAN在可比参数方面性能超过了最新模型。  相似文献   

3.
叶杨  蔡琼  杜晓标 《计算机应用》2005,40(12):3618-3623
单图像超分辨率是一个不适定的问题,是指在给定模糊和低分辨率图像的情况下重建纹理图案。卷积神经网络(CNN)最近被引入超分辨率领域中,尽管当前研究通过设计CNN的结构和连接方式获得了出色的性能,但是忽略了可以使用边缘数据来训练更强大的模型,因此提出了一种基于边缘数据增强的方法,即单图像超分辨率的非局部通道注意力(NCA)方法。该方法可以充分利用训练数据并通过非局部通道注意力提高性能。所提方法不仅为设计网络提供了引导,而且也可以对超分辨率任务进行解释。非局部通道注意力网络(NCAN)模型由主分支和边缘增强分支组成,通过往模型里输入低分辨率图像并预测边缘数据,使主分支自注意力重建超分辨率图像。实验结果表明,在BSD100基准数据集上与二阶注意力网络(SAN)模型相比,NCAN在3倍放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了0.21 dB和0.009;在Set5、Set14等其他基准数据集上与深度残差通道注意力网络(RCAN)模型相比,NCAN在3倍和4倍放大因子下的PSNR和SSIM都取得了较为明显的提升。NCAN在可比参数方面性能超过了最新模型。  相似文献   

4.
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.053 58,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。  相似文献   

5.
现有的单图像超分辨率重建算法一般存在重建图像过于失真或将低分辨率图像噪点放大的问题,针对上述两个问题,提出一种基于简单通道注意力机制的生成对抗网络(SCAGAN)模型。采用随机高阶退化模型缓解重建图像过于失真的问题;加入简单通道注意力机制模块到残差密集块中作为模型的生成器网络模块,解决重建图像将低分辨率图像重建后噪点会放大的问题。实验数据表明,与现有的超分辨率算法相比,该算法有效降低了重建图像过于失真与将低分辨率图像噪点放大的问题,重建出的图像更加真实自然。  相似文献   

6.
针对目前图像超分辨率重建算法中因退化过程过于单一所导致的网络性能下降和模型泛化能力差等问题,本文提出了多尺度残差和二阶退化的图像超分辨率重建算法。该算法首先设计了二阶退化模型,在每一阶退化过程中加入随机的下采样、模糊、噪声和压缩操作以保证退化模型的复杂性和易用性。其次提出了多尺度感受野残差密集块,利用多分支结构和空洞卷积来增强网络的特征提取能力。最后改进了上采样方式,交替使用双线性插值和亚像素卷积上采样算法,以平衡算法性能和时间复杂度。实验结果表明,该算法在三个基准数据集上的自然图像质量评估指标平均下降了1.15,且重建图像视觉观感更好,纹理细节、亮度和饱和度更加准确。  相似文献   

7.
程德强  朱星光  寇旗旗  陈亮亮  王晓艺  赵佳敏 《智能系统学报》2012,(收录汇总):1173-1184
针对目前诸多图像超分辨率重建算法通过采用单一通道网络结构无法充分利用特征信息的问题,提出了一种可以高效利用特征信息的融合分层特征与残差蒸馏连接的超分辨率重建算法。该方法首先设计了一种将分层特征融合与残差连接相结合的连接方式,对图像深层特征与浅层特征进行充分融合,提升了网络对于特征信息的利用率;其次设计出一种残差蒸馏注意力模块,使网络更高效地关注图像关键特征,从而可以更好地恢复出重建图像的细节特征。实验结果表明,所提出的算法模型不仅在4种测试集上呈现出更优秀的客观评价指标,而且在主观视觉效果上也呈现出更好的重建效果。具体在Set14测试集上,该模型4倍重建结果的峰值信噪比相对于对比模型平均提升了0.85 dB,结构相似度平均提升了0.034,充分证明了该算法模型的有效性。  相似文献   

8.
近年来,深度学习被广泛应用于图像超分辨率重建。针对基于深度学习的超分辨率重建方法存在的特征提取不充分、细节丢失和梯度消失等问题,提出一种基于通道注意的递归残差深度神经网络模型,用于单幅图像的超分辨率重建。该模型采用残差嵌套网络和跳跃连接构成一种简洁的递归残差网络结构,能够加快深层网络的收敛,同时避免网络退化和梯度问题。在特征提取部分,引入注意力机制来提升网络的判别性学习能力,以提取到更准确、有效的深层残差特征;随后结合并行映射重建网络,最终实现超分辨率重建。在数据集Set5,Set14,B100和Urban100上进行放大2倍、3倍和4倍的重建测试实验,并从客观指标和主观视觉效果上将所提方法与主流方法进行比较。实验结果显示,所提方法在全部4个测试数据集上的客观指标较对比方法均有明显提升,其中,相比插值法和SRCNN算法,在放大2倍、3倍、4倍时所提方法的平均PSNR值分别提升了3.965 dB和1.56 dB、3.19dB和1.42 dB、2.79 dB和1.32 dB。视觉效果对比也表明所提方法能更好地恢复图像细节。  相似文献   

9.
贾凯  段新涛  李宝霞  郭玳豆 《计算机应用》2018,38(12):3563-3569
针对单通道图像超分辨率方法难以同时实现快速的收敛性能以及高质量的纹理细节恢复的问题,提出一种基于双通道卷积神经网络的图像超分辨率增强算法。首先,网络分为深层通道和浅层通道,深层通道用于提取图像的详细纹理信息,浅层通道用于恢复图像的总体轮廓。然后,深层通道利用残差学习的优势,加深网络并降低模型参数规模,消除因网络过深导致的网络退化问题,构造长短期记忆块消除由反卷积层造成的伪影现象和噪声,采用多尺度方式,提取图像不同尺度的纹理信息,而浅层通道只需负责恢复图像主要轮廓。最后,融合两通道损失对网络不断优化,指导网络生成高分辨率图像。实验结果表明,相比基于深层和浅层卷积神经网络的端到端图像超分辨率算法(EEDS),所提算法收敛更迅速,图像边缘和纹理重建效果明显提升,其峰值信噪比(PSNR)和结构相似性(SSIM)在Set5数据集上平均提高了0.15 dB、0.0031,在和Set14数据集上平均提高了0.18 dB、0.0035。  相似文献   

10.
目的 图像超分辨率重建的目的是将低分辨率图像复原出具有更丰富细节信息的高分辨率图像。近年来,基于Transformer的深度神经网络在图像超分辨率重建领域取得了令人瞩目的性能,然而,这些网络往往参数量巨大、计算成本较高。针对该问题,设计了一种轻量级图像超分辨率重建网络。方法 提出了一种轻量级图像超分辨率的蓝图可分离卷积Transformer网络(blueprint separable convolution Transformer network,BSTN)。基于蓝图可分离卷积(blueprint separable convolution,BSConv)设计了蓝图前馈神经网络和蓝图多头自注意力模块。然后设计了移动通道注意力模块(shift channel attention block,SCAB)对通道重点信息进行加强,包括移动卷积、对比度感知通道注意力和蓝图前馈神经网络。最后设计了蓝图多头自注意力模块(blueprint multi-head self-attention block,BMSAB),通过蓝图多头自注意力与蓝图前馈神经网络以较低的计算量实现了自注意力过程。结果 本文方法在4个数据集上与10种先进的轻量级超分辨率方法进行比较。客观上,本文方法在不同数据集上取得了不同程度的领先,并且参数量和浮点运算量都处于较低水平。当放大倍数分别为2、3和4时,在Set5数据集上相比SOTA(state-of-theart)方法,峰值信噪比(peak signal to noise ratio,PSNR)分别提升了0.11dB、0.16dB和0.17dB。主观上,本文方法重建图像清晰,模糊区域小,具有丰富的细节。结论 本文所提出的蓝图可分离卷积Transformer网络BSTN以较少的参数量和浮点运算量达到了先进水平,能获得高质量的超分辨率重建结果。  相似文献   

11.
目前,单幅图像超分辨率重建取得了很好的效果,然而大多数模型都是通过增加网络层数来达到好的效果,并没有去发掘各通道之间的相关性。针对上述问题,提出了一种基于通道注意力机制(CA)和深度可分离卷积(DSC)的图像超分辨率重建方法。整个模型采用多路径模式的全局和局部残差学习,首先利用浅层特征提取块来提取输入图像的特征;然后,在深层特征提取块中引入通道注意力机制,通过调整各通道的特征图权重来增加通道相关性,从而提取高频特征信息;最后,重建出高分辨率图像。为了减少注意力机制带来的巨大参数影响,在局部残差块中使用了深度可分离卷积技术以大大减少训练参数,同时采用自适应矩估计(Adam)优化器来加速模型的收敛,从而提高了算法性能。该方法在Set5、Set14数据集上进行图像重建,实验结果表明不仅该方法重建的图像具有更高的峰值信噪比(PSNR)和结构相似度(SSIM),而且所提模型的参数量减少为深度残差通道注意力网络(RCAN)模型的参数量的1/26。  相似文献   

12.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

13.
在基于深度学习的图像超分辨率重建领域,通过扩大网络规模以提高性能将导致计算资源损耗增加。为此,提出了一种轻量级的基于金字塔池化注意力机制网络(light-weighted pyramid pooling-based attention network,LiPAN),该算法模型由融合注意力机制的信息蒸馏块、多层金字塔池化结构和反向注意力融合模块组成。注意力机制确保了网络对重要特征的提取,金字塔池化结构可获取更多的上下文信息,得到更准确的重建结果,蒸馏结构的引入可有效地提高网络性能并减少网络参数。与目前主流的轻量级网络模型相比,提出的LiPAN模型在Set5、Set14、BSD100及Urban100四个公共数据集分别进行2倍、3倍和4倍下采样重建并定量评估,获得最优峰值信噪比和结构相似度。由此表明,提出的LiPAN在网络模型参数与当前主流的轻量级网络相当的情况下,具有更优的超分辨率重建性能。  相似文献   

14.
王诗言  曾茜  周田  吴华东 《计算机工程》2021,47(3):269-275,283
目前多数利用卷积神经网络进行图像超分辨率重建的方法忽视对自然图像固有属性的捕捉,并且仅在单一尺度下提取特征。针对该问题,提出一种基于注意力机制和多尺度特征融合的网络结构。利用注意力机制融合图像的非局部信息和二阶特征,提高网络的特征表达能力,同时使用不同尺度的卷积核提取图像的不同尺度信息,以保存多尺度完整的信息特征。实验结果表明,该方法重建图像的客观评价指标和视觉效果均优于Bicubic、SRCNN、SCN和LapSRN方法。  相似文献   

15.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

16.
吴荣贵  蒋平 《计算机应用研究》2020,37(12):3788-3791
为解决现有基于深度学习的超分辨算法模型没有充分利用各个层次的特征信息导致重建精度不高、参数量大的问题,提出了一个内外双重密集连接结构——密集跳跃注意连接网络。内层结构中,对原始密集级联结构进行改进,提出了通道可分密集级联块;外层结构采用密集残差连接结合注意力机制将由密集块提取的特征进行融合,从而达到更少卷积层、更高精度的效果。在多个基准数据集上测试,提出的网络较其他网络层数体量相近的算法精度更高、参数量更少。  相似文献   

17.
欧阳宁  韦羽  林乐平 《计算机应用》2005,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

18.
欧阳宁  韦羽  林乐平 《计算机应用》2020,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号